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Contraction is defined for a Lie group to coincide on its Lie algebra with a generalization of contraction 
as first introduced by Iniinii and Wigner. This is accomplished with a sequence of nonsingular coordinate 
transformations on the group (or nonsingular linear coordinate transformations on its Lie algebra), whose 
limit is a singular one. Essentially all of the calculations are performed in the algebra. It is assumed that in 
the limit the association in the algebra (the multiplication law in the group) converges, and this gives a 
necessary and sufficient condition on the algebra. Once it is satisfied, the new (contracted) algebra is uniquely 
determined in terms of the original one. It is found that the contracted algebra can be further contracted in 
the same way, and likewise the algebra so obtained. In this way one obtains a terminating sequence of 
algebras. Iniinii-Wigner contraction corresponds to a sequence terminating at the first contraction. Some 
properties of the original and contracted algebras are studied, and some specific examples are given. 
Contraction of a Lie algebra induces contraction of any of its representations. This is examined for the case 
of finite-dimensional representations. Ray representations are discussed in genera!. It is shown how the 
trivial exponent of the Lorentz group changes under contraction to the nontrivial one of the Galilei group. 

INTRODUCTION 

T HE concept of group contraction was introduced 
by Inonii and Wigner1 in a paper which describes 

some of its general properties and discusses some 
particular examples. Roughly speaking, their procedure 
is the following. 

by the coordinate transformation remains, of course, 
isomorphic to the original one. If, however, U becomes 
singular when E=O one may, as IW show, obtain a 
new Lie algebra (and hence a new Lie group) which is 
not isomorphic to the original one. 

Consider a Lie group C(O) and its Lie algebra ®(O). 

Assume a coordinate system in ® (0) in which the elements 
~ of the algebra have components ~i. Then perform a 
coordinate transformation in @(O) given by 

~i= U/~', 

where the matrix U depends on a parameter £ running 
from some finite value Eo to zero. So long as E~O, U is 
assumed nonsingular, so that the Lie algebra obtained 

* This paper is based on a dissertation (hereafter referred to 
as D) presented to Princeton University in partial fulfillment of 
the requirements for the degree of Doctor of Philosophy. 

t National Science Foundation Science Faculty Fellow. 
t Present address: Department of Physics, Rutgers University, 

New Brunswick, New Jersey. 
1 E. Iniinii and E. P. Wigner, Proc. Nat!. Acad. Sci. U. S. 39, 

510 (1953) (hereafter referred to as IW). 

1 

IW find the necessary and sufficient condition that 
a group can be contracted, assuming that by a suitable 
choice of nonsingular matrices a and {3 the matrix U 
can be transformed to the form 

{3Ua-1=tt+EW, 
where 

(1) 

tt= l~ ~l 
and 

w=l~ 
01 

II' 
In what follows we shall call group contraction so 
defined [i.e., assuming U can be put in the form of (1)J 
Inonii-Wigner contraction (or merely IW contraction). 

The present purpose is to generalize somewhat this 
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concept of group contraction. The motivation is closely 
related to that of IW. It is essentially physical, and 
arises from the way in which the Lorentz group con­
tracts to the Galilei group. With this in mind, let us 
consider a particularly simple example: the inhomo­
geneous Lorentz group in one timelike and one space­
like dimension. The three parameters v, y, and T, the 
velocity of the moving frame, the space translation, 
and the time translation, define the group elements, 
which we shall write in the form (V,y,T)X; here the 
subscript X= l/c indicates the fact that the group 
product depends on X. This product is 

(V2,Y2, T2)x(Vl,yr,Tl)X 

< 
Vl+V2 

= ,Y2+g2(X)(Yl+V2Tl), 
1+X2V1V2 

T2+g2(X)(T1+V2y1X2) > x' (2) 

where g2(X) = (1- X,2V22)-!. 
Let us now let c increase without bound, or go to the 

limit as X ~ O. Then (2) becomes 

which is the multiplication law for the Galilei group. 
N ow this same result could be obtained by considering 

(2) for X= 1 and reparametrizing the group so obtained. 
In particular we may write 

(V,y,T )x= (XV,Xy,T)l, (4) 

and we then find that (V,y,T)x satisfy the same multi­
plication law as (V,y,T)x, and in the limit this will also 
lead to (3). So long as X~O, however, it is clear that 
we have merely performed a coordinate transformation 
in the original group, which does not change the group 
in any essential way. When we pass to the limit, on 
the other hand, the group changes, and this new group 
is what is called the contracted one. 

It might perhaps have been more natural to write, 
instead of (4), 

(V,y,T)X = (XV,y,T/X) 1. 

This would correspond to writing out the trans­
formations themselves for the variables x and ct rather 
than x and t, whereas Eq. (4) corresponds to writing 
out the transformations for xl c and t. Clearly, there is 
no essential difference between these two schemes. 
We wish, however, to express the reparametrization 
linearly in X, and we therefore choose (4) over the 
alternate form. It is interesting that this choice of 
linearity in X, as is seen from the previous example, is 
not as restrictive as it seems at first. The degree to 
which it is restrictive depends to a large extent on the 
structure of the group. 

It is seen from this example that by a suitable 
reparametrization which is then allowed to tend to a 
limiting form it is possible to obtain one group from 

another (though not always one which is not 
isomorphic). In what follows we generalize the concept 
of contraction using the previous example as a model. 

This paper is divided into two parts. In the first the 
fundamental results are derived and some examples 
are given. The second is a discussion of some aspects 
of representations. 

I 

A. Contraction 

1. Definition 

Consider an n-dimensional connected Lie group G(O) 

and a differentiable coordinate system2 in it, in which 
the coordinates of any xa;(O) are Xi, and the coordinates 
of the identity e all vanish. Further, consider a se­
quence of other differentiable coordinate systems, in 
which the coordinates of x are Xi (again we arrange it 
so that the coordinates of e all vanish). Let these 
systems be related to the original one by a set of 
differentiable functions 

~i(O,·· ·O,X)=O, 

and such that the determinant of the 

a'Pii Uji=-
axi ;;'=2:'= ... =;;"=0 

(5) 

(6) 

vanishes if and only if X=O, and let the ~i and their 
derivatives converge as X tends to zero. Let the group 
operation in terms of the unbarred coordinates be 

(xy) i= Zi(XI, . .. ,xn; yI,' .. ,yn) = Zi(X,y), (7) 

and in the barred system let the coordinates of the pro­
duct be 

zi= (Xl", ·,Xn; fP," ·,ir)=zi(x,y). (8) 

It is a simple matter to obtain the Zi in terms of the Zi 
and the set of functions inverse to the 'Pi (which exist 
by assumption for X~O). 

Thus from the coordinate transformation and the 
multiplication law in the unbarred coordinates, we 
can obtain the multiplication law in the barred co­
ordinates. But this will have meaning only if X>O, 
for the functions inverse to the ~i are not defined at 
x=o. We shall assume, however, that the expression 
on the right of (8) has a limit as X ~ 0, which we 
shall call Z(I)i(X,y). This new set of functions defines, 
in general, a new mUltiplication law, and hence a new 
group G(l), which we shall call the contraction of G(O). 

Note that the assumption of the existence of the limit 

2 L. Pontrjagin, Topological Groups (Princeton University 
Press, Princeton, New Jersey, 1946), 
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is just the assumption that ceo) can be contracted in 
this way. Our task shall be to find the conditions under 
which this limit exists and the ensuing consequences. 

2. Lie Algebra 

As is often the case when dealing with Lie groups, it 
is convenient to pass to the Lie algebra. We wish 
therefore to restate the assumption that the 

Z(l)i(X,y) = lim Zi(X,y) (9) 
1.--->0 

exist in terms of the algebra. 
We start by associating in a well-known way2 with 

C(O) the n-dimensional vector space S of tangent 
vectors at the unit element to the curves x(t). The 
original coordinate system in ceo) induces a co­
ordinate system in S, and in this coordinate system 
~fS has components ~i(i= 1" .. ,n). Under a coordinate 
transformation given by the 'Pi in C(O) the coordinates 
of ~ change according to [see (6)J 

e=U/~i. 

The Lie algebra ®(O) is given by S together with a 
composition law derived from the multiplication law 
in C(O). "Vith every pair of vectors ~, '11 in S we associate 
a third vector t; whose components are 

(10) 

where the Cik i are the well-known structure constants 
of the group C(O). This equation corresponds to (7) in 
that the association is induced in the algebra by the 
multiplication law of the group (and conversely, the 
so-called covering group can be constructed from the al­
gebra). Now under a coordinate transformation the 
vector t; associated with given ~ and '11 will, of course, 
not change, though its components will. Thus the Cjk' 

must change, and if we write the new components of 
t; in the form 

(lla) 

the Cjk i are given by the obvious tensor transformation 
law 

Cjk i = CU-l)liCmnIUrUkn • (Ub) 

These last two equations bear the same relation to 
(8) as (10) does to (7). Clearly Eq. (Ub) is meaningless 
when >"=0, for U-I is then not defined. But we have 
assumed that as >.. ~ ° the z' ~ z (1) i. As >.. varies, we 
can obtain the Cjki in the usual way from the Zi, and 
these are given by (llb). In particular, in the limit 
X=o the ZO)i give limiting values for the structure 
constants, and these define the Lie algebra of the 
contracted group (the contracted algebra). Thus if 
the Zi have a limit, so do the ejk i

• 

Conversely, if (11b) has a limit as >.. tends to zero, 
the multiplication law defined by the Ciki will have a 
limit. Further, the limit obtained by constructing the 

multiplication law from the Cjle i and then letting X tend 
to zero is the same as that obtained by constructing 
the multiplication law from the ·limiting structure 
constants (see Appendix). Thus we see that so long 
as we are interested in a small enough region about 
the unit element, the Lie algebra is sufficient for our 
purposes. 

Let us restate our results somewhat, taking the 
"active" rather than "passive" view of the transforma­
tion. We shall write the association in a coordinate­
system independent form: with every ~ and '11 in S we 
associate a t; according to 

This bracket has all of its well-known properties: it is 
antisymmetric, linear, and satisfies the Jacobi identity. 
Further, the U/ now will define a mapping rather 
than a coordinate transformation. In other words, the 
vector ~ with components ~i is mapped by U into 

U~, with components ~i= U/~i. In the process the 
bracket must change, so that if t= [~,1/J, then f= G,fiJ' 
(the prime denotes that the bracket is not the same one 
as before the mapping j it is, in fact, >..-dependent). This 
is evidently a restatement of (lla) and (llb). We are 
now interested in how the bracket changes under the 
mapping. Accordingly, we consider 

Going to the limit, we find that the Lie algebra ®(l) of 
the contracted group is given by 

[~,1/J(l) =lim U(>")-l[U(X)~,U(>"hJ (13) 
1---->0 

(the bars have been dropped and the >..-dependence of 
U indicated). 

Thus we study the contraction of a (local) Lie group 
by studying the contraction of its Lie algebra according 
to (13). 

3. l<lecessary and Sufficient Condition for Contraction. 
The bracket in ®(l) 

Note that U was defined [see Eq. (6)J so that 
U (1) = I. This is not necessary, but involves no loss 
of generality, since a nonsingular coordinate trans­
formation in C(O) can always be made to bring this 
about. As was mentioned in the Introduction, we shall 
consider only UeX) linear in >... Then we write 

U(X) u+Xw 
=>..1+ (1->..)u. 

From the condition that U (>..) is singular if and 
only if X=O, it follows that U(O)=u is singular. 
With this expression for U(>"), Eq. (12) becomes 
[here .u=>../(I-X)J 

[~,'11]' = {1/ (,1.4+ 1) I (.u+u)-l[ (.u+u)~, (.u+u)'I1J. (14) 
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Note that the limit as X ----> 0 is the same as the limit In this limit as 11- ----> 0 this becomes 
as 11- ----> o. 

Equation (14) contains the inverse of (.u+u), and 
this inverse exists by assumption so long as 11-~0. We 
proceed to find it as follows. Let SR and SN be subspaces 
of S such that 

U"S=SR 

U"SN=O. 

(Here n is the dimension of S. The last equation is 
meant in the sense that SN is the maximum space 
annihilated by u", or u"~=O if and only if ~ESN.) From 
these definitions it follows3 that SN and SR reduce u, 
and that u is nonsingular when restricted to SR and 
nilpotent when restricted to SN. Further, 

Since SR is invariant under u, and u is nonsingular 
on SR, there is no problem in defining an inverse for u 
on SR, and we shall call it simply u-1

. For convenience 
(to make clear what happens in the limit) we write 

(I1-+U)-1=U-1(I1-U-1+J)-1 on SR. 

Further, it is easily verified that 

on SN, 

where q is the lowest power of u which annihilates SN. 
Since in the limit as 11- ----> 0 the factor 1/ (1 +11-) ----> 1, 

we shall drop it from our discussion of (14). Then 
except for this factor (14) becomes, when expanded in 
powers of 11-, 

[~,11J' = (I1-+U)-1{11-2U,11]+I1-([U~,11]+[~,U11]) 
+[U~,U11]}. (15) 

We break up the brackets into their projections into 
SR and SN, writing 

U= UR+UN= U,11] 

T= TR+TN= [U~,11]+[~,U11] 

7r= 7rR + 7rN = [U~,U11], 

where for any vector !;ES we write 

(These projections into SR and SN are unique.) Then 
(1S) becomes 

U,11J' = u-1 (I1-U-1+ J)-1(11-2UR+I1-TR+7rR) 

+~ £1 (-U)i(11-2UN+I1-TN+7rN). 
11- l~O 11-

• P. R. Halmos, Finite Dimensional Vector Spaces (Princeton 
University Press, Princeton, New Jersey, 1948). 

If this is to converge as 11- ----> 0, then we must demand 
that 

or 

This is the necessary and sufficient condition that 
G(O) can be contracted with the given <pi (or U), stated 
in terms of the Lie algebra @(O) and U= U(O). That 
it depends only on U (0) follows from our choice 
U(1)= 1 and the linear X-dependence of U(X). 

It will be convenient to rewrite (17) in another form. 
By applying ur- 2(r=2,3,···) to (17), we have 

ur[~,11JN- ur- 1U,U11JN= ur- 1[ U~,11JN- ur- 2[ u~,u111'V· 

This equation is satisfied for all r> 1 and all ~ and 11, 
so we may use it to reduce the power of u (if r> 2) 
operating on the brackets on the right. This means we 
can move factors of u one at a time from outside the 
brackets into the brackets (operating on the first 
vector in the brackets). In this way we arrive eventually 
at 

ur[ ~,111~'- ur-l[~,U11JN 
=u[Ur-l~,11JN- [ur-l~,U11JN. (17a) 

Note that this equation is valid for r= 1,2,· .. (for r= 1 
it is an identity), and is entirely equivalent to (17). 

Now if (17) is satisfied we may go to the limit 11-=0 
in (16) [recalling (13)J 

U,11JCl) = u-1
[ U~,U11JR-UU,11JN 

+[U~,11JN+[~,U11JN. (18) 

This is the defining equation for @(l), the contracted 
Lie algebra. (Note again that u-1 is defined only on 
SR.) We will say that contracting @(O) by u gives@(l). 

B. Sequence of Contracted Algebras 

1. Structure oj@(O) 

Equation (17) is a requirement on @(O). From it we 
may deduce the following. 

Lemma 1. If u contracts @(O) [satisfies (1i)J, then 
so does um(m= 1,2,· .. ). 

Proof. We remark first that the equations 

(um
) "SN= 0 

(um)"S=Su 
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define the same subspaces of S as did the similar 
equations in which urn was replaced by u. Thus we 
may make use of the projections into these subspaces. 

In order to prove the lemma we show that (17 a) is 
satisfied if u is replaced everywhere by uffl

• We thus 
consider (dropping the subscript :V on the brackets) 

I = umr[~,1]J-1tm(r-l)[~,Um1]J. 

We factor um(r-I)-I from this expression,4 and in (17a) 
we write r=m+ 1 and interchange the vectors in the 
brackets. It is then seen that 

. I=um(r-l)-l{um+l[~,1]J-u[~,lO~J} 
= um(r-l)-1{lOm[lO~,1]]- [u~,Um1]J} 

= umr- 1[ 1O~,1]]- um(r-l)-l[lO~,lOm1]J. 

This expression for I can be obtained from the previous 
one by moving one factor of 10 from outside the brackets 
onto ~ in the brackets. On repeating this procedure for 
a total of m(r-1) times, we arrive at 

I =Umr[~,l1J- um(r-l)[~,lOm1]J 

lOm[ 10m (r-l) ~,1]J- [10m (r-ll ~,lOm1]J. 

But this is just (17a) with 10 replaced by 10m, which 
proves the lemma. 

We may use (17) also to prove the following pro­
position concerning the structure of @(O). 

Lemma 2. The subspace uS of S forms a sub algebra 
in (~(O). 

Proof. Let e and 1]' be in lOS. Then there exist ~ and 
1] in S such that e=lO~ and 1]'=101]. Now according 
to (17) 

[U~,101]JN= -zt(lOG,1]]N- [U~,1]JN- G,101]]N) , 

which is obviously in lOS. Further SRClOS, so that 
[lO~,101]]RtlOS. Since 

[lO~,U1]JN+[U~,U1]]R= [U~,U1]]= [~',1]'], 

we see that 
G',1]']~uS. 

This proves the lemma. 
Corollary. The subspace umS of S (with m= 1,2" .. ) 

forms a subalgebra in @(O). In particular this is true 
of SR=UnS. 

This follows immediately from lemma 1. 

2. Contraction of@(l) 

We will show now that @(l) can also be contracted 
by u by showing that (17) is satisfied when [~,1]J is 
replaced by [~,1]](l). As in lemma 1, the significance of 
SR and SN remains the same, and we may continue to 
use their properties. In other words, the subscripts N 
and R have the same value when discussing the 
bracket in @(l) and in @(O). 

• We need consider only r> 1, since otherwise (17a) is an identity 
even if u is replaced by urn. Also, we are interested only in m> 1. 
Therefore all exponents appearing in the proof are positive. 

Let us then calculate (again dropping the subscript N) 

J = U2[~,11](l)-U[u~,1]J<j)- u[~,101]J<l)+[u~,U1]J<l). 

We use (18) [dropping the first term, for (17) involves 
only the projections into SN], obtaining 

J = -u3G,1]]+ 2u2([u~,1]J+[~,Ul1])-U([102~,1]] 
+[~,U~J+3[1t~,U1]])+[U2~,U1]J+[U~,U21]J 

= -lOf(~,11)+f(u~,1])+f(~,1t1])=O, 

where we have writtenf(~,1]) for the vanishing function 
of ~ and 1] given by (17) . 

Thus @(1) can be contracted by u, which means that 
lemmas 1 and 2 and the corollary to 2 hold for @(O as 
well as for @(O). Let us call @(Z) the algebra obtained 
when @(l) is contracted by u. 

3. Sequence of Contracted Algebras 

\Ve are led in this way to a sequence of algebras 
each of which is obtained from the previous one by 
contraction by u. That @(2) can be contracted by u 
follows from the fact that @(I) can; we call the algebra 
so obtained @(3). In this way we form the sequence, 
writing symbolically 

@li+l)=U·(;S3(i), 

where v·@ is the algebra obtained when a given 
algebra @ is contracted by a given singular matrix v. 
We will now show that all the @(i) of the sequence are 
related as follows. 

Lemma 3. ui.@(f)=@(i+i). 
Proof. First note that it is sufficient to prove the 

lemma for j=O. Indeed, we may start a sequence with 
any @U), j=O, 1, ... , so that from this point of view 
@(O) plays no special role. 

The proof proceeds by induction. The lemma holds 
by definition for i= 1 (and j=O). Assume it true for 
i=s. Then the bracket in @(8+J)=U·@(8' is given by 

G,1]J(8+1)=U-l[U~,U1]JR(')-UG,1]JN(') 

+[U~,1]JN(8)+[~,U1]JN(8) 

= u-(,+1)[Ua+I~,U8+~JR+U8+1[~,1]JN 

-u[u'~,1]JN-u[~,u'1]]N-U8[U~,l1JN 

+[1O'+1~,1]lhJ+[1t~,U81]JN-us[~,U1]JN 
+[1t8~,U1]JN+[~,U$+I1]JN. 

The bracket in U8+I.@lO) is 

A = u-(a+1)[U8H~,U8+11]JR-Us+IG,1]JN 
+[u,a+l~,1]JN+[~,ua+1111v. 

The SR projections of these two brackets are the same. 
Thus the difference between them lies entirely in SN 
and is (dropping the subscript N) 

[~,1]]t8+l) - A 

=ua+n,1jJ-u8[~,U'l1J-u[u'~,1]]+[u8~,U1]J 

+u"+ln,1]J-us[u~,1]J-u[~,U8'11J+[u~,u'1]J, 
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which vanishes according to (17a). Therefore 

A = n,'I]]t<+o, 

which proves the assertion. 
It will be seen later that the sequence we have 

defined is finite in the sense that after a certain algebra 
(which is, in fact @(q), where q is the lowest power of 
2t which annihilates SN) further contraction gives only 
isomorphic algebras. The proof of this depends on some 
properties of the contracted algebras, to which we now 
turn. 

4. Properties of the @(i) 

We remark first that lemmas 1 and 2 apply to every 
@w of the sequence. In particular, for instance, uiS 
forms a subalgebra in each of the @(;). There follow 
some further structural properties of the @(i). 

(a) Let Si be the null space of ui , i.e., ~f'Si if and 
only if Ui~= O. Then Si forms an ideal in @(i+il, 
j=O, 1, .... Recall that an ideal (or normal subalgebra) 
~ of a Lie algebra @ is a sub algebra for which ~E~ 
implies that G,'I]]e~ for all 'l]E@. It is the Lie algebra of 
a normal subgroup of the Lie group. 

We first prove the assertion for i= 1, i+j=m?1. 
Assume ~fSl. Then in@(,+i)=@(m) the bracket is 

[~,'I]J<m)=~rl[u~)U'l]JR(m-1)_u[~,'I]JN(m-1) 

+[U~,'I]JN(m-1)+[~,U'l]JN(m-1). 

The first and third terms vanish because u~=O. Then 

u[~,'I]J(m) = - U2U,'I]JN(m-1)+u[~,U'l]JN(m-l) 

= -u[u~,'I]1v(m-1)+[u~,U'l]JN(m-l), 

where we have used (17) as applied to @(".-1). This 
last expression vanishes because u~=O. Thus u[~,'I]J<m) 
=0, or U,'I]](m)ESI, as asserted. Now we can replace u 
by ui in this proof so long as m- i? O. Hence the 
assertion is true for any i. 

What this means is that Sl forms an ideal in @(1); 
SI and S2 form ideals in @(2) ; 51, S2, and S3 form ideals 
in @(3); etc. 

(b) Let @P) be the ideal formed by Sj in @(i) 
(with js,i). Then the derived algebra of @m(m+l) is 
contained in Sm_l (where we call SO=S-l='" =0). 
Recall that the derived algebra @' of a Lie algebra @ 
is made up of all linear combinations of elements of 
the form U,'I]], where ~ and 'I] are in @. 

To prove this assertion, let ~,'I]ESm. Then 

[~,'I]J<m+l) = U-I[UI~,UI'l]]ll (m) - ul[~,'I]JN(m) 

+ [UI~,17JN(m)+U,ul17]N(m). 
Since ~ and 17 are annihilated by um, so are Ul~ and U1'l], 
which are thus in Sm. But Sm forms an ideal in @(mJ, 
so that [ul~,UI'l]J<m)ESm. It is clear, however, that 
SmnSR=O, for nothing in SR is annihilated by any 
power of u. Thus the first term vanishes. The second 
term is in Sm-I, for [~,17]N(m)ESm, and if !;ES"" then 

UI!;ESl1v-l (for um-1(ul!;)=um!;=O). Finally, each of the 
last two terms is in S",-l; for Ul~, for instance, is in Sm-I, 
and this forms an ideal in @(m). A moment's thought 
will show that these statements are true whether 1 is 
less than, equal to, or greater than m. Since each of 
the terms in the decomposition of G,'I]]Cm+ ll is in Sm-I, 
so is [~,'I]](m+l) itself. This proves the assertion. 

Note that it follows that@m(2m+il (j=0,1,''') is an 
Abelian Lie algebra (an Abelian ideal in @(2m+i ». For 
example, SI forms an Abelian ideal in@(2), @(3), ... ; S2 
forms an Abelian ideal in@(4), @(.), .... 

(c) We see from the foregoing that no algebras of 
the sequence past ~; (0) are simple; all have ideals. 
Further, none past @(1) are semisimple: all have 
solvable (in fact Abelian) ideals.· We will see now that 
@(1) is not semisimple. In fact @1 (1) is solvable. 

In proving this we shall need to make use of the 
relation 

which we prove first. Let ~t(SlnuiS). Then there 
exists an 17ES such that 1J,i'f/=~. But Ui+l'f/=U~=O, so 
that 'l/ES,+I, and ~EUiS'+1' Conversely let ~E1tiSi+1' Then 
clearly ~EUiS. Further, 2t~EUi+lSi+l=0, so that ~ is in 
SI and hence also in SlnUiS,+I' This proves the 
relation. 

Now let ~ and '1/ be vectors in SI. For such vectors 
(18) reduces to 

Since @1(1) is an ideal this bracket is in SI, and it is 
obviously in uS. Thus the derived algebra of @1(l) is 
in SlnUS=uS2• Now consider ~,17EuS2. Since uS is a 
subalgebra in @(O), it follows that UU,'I]]NEU2S. Thus 
[~,'I]J(l)ESlnu2S=u2S3, or the derived algebra of the 
algebra formed by US2 in @(1) is in U2S3' Proceeding by 
induction, consider ~,'l/euiS'+I' Since uiS is a subalgebra 
in @(O), it follows that UG,17]NEUi+1S. Thus 

U,'I]]C1) ES InUi+1S = Ui+1Si+2. 

We proceed in this way until we come to ~,17ESlnUq-JS 
= Uq- lsq (note that Sq= SN by definition). For these 
~,17, the bracket [~,17]C1) is in SlnUqS= SlnSR=0. 
Thus this bracket vanishes, and @1(1) is solvable. 

(d) Recall that SR forms a subalgebra in every 
algebra of the sequence. These subalgebras are all 
isomorphic. This is easily shown if we recall that two 
Lie algebras @ and @' are isomorphic if there exists a 
one-to-one mapping A of @ onto @' such that for 
all ~,'l/E@ 

(19) 

Here [ ] is the bracket in @, and [ J' is the bracket 
in@'. 

5 A simple Lie algebra has no ideals. A semisimple one has no 
solvable ideals. Solvable may be defined as follows: Let <lol' be 
the derived algebra of <lol, <lol" the derived algebra of <lol', etc. 
Then <lol is solvable if the sequence <lol, <lol', <lol", ••• terminates 
with zero. 
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Here [ ] is the bracket in @, and [ J' is the bracket 
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5 A simple Lie algebra has no ideals. A semisimple one has no 
solvable ideals. Solvable may be defined as follows: Let <lol' be 
the derived algebra of <lol, <lol" the derived algebra of <lol', etc. 
Then <lol is solvable if the sequence <lol, <lol', <lol", ••• terminates 
with zero. 
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With this in mind, we consider ~,flESR. Then for any 
m Eq. (18) becomes 

U,flJ<m) =u-m[u"'~,u~J, 
for SR forms a sub algebra in@(O). Thus we see that the 
algebras formed by SR in the @(m) are all isomorphic 
to that in @(O), and hence to each other. 

Other properties of the@(;) can be deduced from (17) 
and (18), but since they are of questionable value, we 
will not list them here. 

(e) Finally, we show that the sequence terminates 
with @(q). .More specifically, @(q) is isomorphic to 
@(q+il,j=O, 1, .... 6 

Consider ~,flESN. Then uq~=U'lfl=O. For such vectors, 
then, (18) gives 

[~,17J(q+f)= -uq+i[~,17JN=O,j=O, 1, .... 

Kow consider ~ESN, 17ESR. Then (18) gives 

[~,flJ(q+i) = -uq+i[~,17JN+n,uq+I".qI~· 

=[~,uq+i17JN, j=O, 1, .... 

Finally, consider ~,'tJESR. Then 

[~,flJ(q+il=u-(q+i)[uq+i~,uq+i17J, j=O, 1, .. '. 

Kow let us define a mapping Aj of S on itself by 

Aj~= ~ if ~ESN, 

Aj~=ui~ if ~ESR. 

It is seen that A is nonsingular. Then 

G,flJ<q+j)=Arl[Aj~,AJ"7]J(q) j=O, 1, "', 

as is easily verified from the foregoing. Therefore all 
the @(q+j) are isomorphic to @(q) (and hence to each 
other). 

5. Summary 

Let us collect the results of Sees. I and II. The 
notation, where unexplained, has been explained in 
the foregoing. 

Theorem. Let C(O) be an n-dimensional Lie group, 
and let the differentiable functions SOi(X1,.. ·,x"; A) 
define a coordinate transformation in C(O) which 
becomes singular in the limit as A --t 0, where the SOi 

have the properties indicated in Eq. (5). Then in this 
limit we obtain a new group, in general not isomorphic 
to C(O), called the contracted group C(l), if and only if 
Eq. (17) is satisfied in the Lie algebra @(O) of C(O). 

The Lie algebra @(l) of C(l) is given by (18). Further 
contraction by u (the same coordinate transformation) 
leads to a sequence of algebras @(i), where @(i+l) is 
obtained by contracting @(i) by u. Any algebra in the 
sequence can be obtained from any previous one by 
contraction by a power of U; Le.,@(i+i) can be obtained 

6 This is not the same statement as IW's assertion that if a 
group is contracted twice with respect to the same subgroup, the 
second contraction is without effect. In our terms this means, as 
we shall see later, tht ®(2q) is isomorphic to ®(q). 

by contracting @(i) by u i . This sequence terminates at 
least with @(q), where q is the least integer for which 
uqS=u"S. In every algebra of the sequence the uiS 
form subalgebras. The subalgebras formed by unS in 
each of the @(i) are isomorphic. If Si is the null space 
of u i for some i, then it forms an ideal in @(i+f), 
=0,1, .. '. The only algebra of the sequence that 
may be simple or semisimple is @<O). 

We now turn to a discussion of the relation between 
IW contraction and the more general kind defined 
here, and to several examples. 

C. IW Contraction. Examples 

1. Case q=I 

We will show that IW contraction IS for us the 
special case q= 1. For this case 

US=SR, USN=O. 

Equivalently, as we will show, we may write 

USnSl=O. 

(20) 

(21) 

It is clear that (20) implies (21) (since SN=Sq=Sl in 
this case), That the converse is also true is seen as 
follows. Assume there exists a ~ES such that Ui~=O 
with i> 1. Then clearly UH~=fI is in uS. Further, 
U17=Ui~=O, so that flESt, and 17=0 by (21). In other 
words, if Ui~= 0, all lower positive powers of u, including 
u itself, annihilate ~, Thus UnSN=O implies that 
USN=O, and hence (20) follows from (21). 

What will be demonstrated, therefore, is that the 
IW case corresponds to Eq. (21), and thus to q= 1. 
Temporarily we shall use IW notation. 

Clearly we may set £0= 1, say by dividing through 
by eo, after which e becomes what we have called A. 
Now let us subject the Iv to the transformation 

That (l+V)-l exists we know, for when e= 1 the 
matrix 

. j(l+V) 011 
U.'/£=1 : 

o 1 

is nonsingular by assumption. Then It and w take on 
the forms 

When £= 1, the matrix U vi now becomes the unit 
matrix. The situation is now the same as ours, except 
that what we call A, IW call £. 

It is clear that with u in this form Eq. (21) is satisfied. 
Thus IW contraction leads to q= 1. To prove that 
q= 1 leads to IW contraction, we proceed as follows. 
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Consider a vector ~fSR' It is clear that U~fSR, and 
hence that 

Thus not only u, but also w maps SR into itself. Since 
u has an inverse on SR, we may define 

Then 

(23) 

Let us turn to SN. For all ~fSN we have u~=O, so 
that 

U(l)~= (u+w)~= I~=w~. 

Thus 

u=o} on SN. 
w=1 

(24) 

Equations (23) and (24) put u and w into the form of 
(22), which completes the proof. 

Another way to characterize IW contraction7 is by 
the way U-I depends on X. In IW contraction this 
dependence is linear in 1/X. For higher q higher powers 
of 1/X enter U-I. 

Consider a general (not IW) contraction by uq , 

which we shall call Q. We see that 

QS=SR, QSN=O, 

which is just (20) with u replaced by Q. Thus this 
contraction is an IW contraction. The algebra ®(q) on 
which our sequence terminates, therefore, can be 
obtained from ®(O) by a single IW contraction by Q= uq• 

Finally, we remark without proof that in the IW 
case Eq. (17) is entirely equivalent to the requirement 
that SR form a subalgebra in ®(O) (corresponding, in 
IW terminology, to the subgroup of C(O) with respect 
to which one contracts). 

2. Property of IW Contraction 

One other property of IW contraction will be found 
useful later. This is that the contracted algebra is 
completely defined (up to an isomorphism) when SR 
is specified. The choice of SR does not determine SN 
uniquely, but any choice of SN such that SN(f)SR=S 
will lead to the same (isomorphic) algebra. 

More rigorously, let u and v be two mappings 
leading to IW contraction such that 

uS=VS=SR, USN = 0, VSM=O, 

for which the null spaces are unequal: SN0;6-SM (it is 
nevertheless true, of course, that SR(f)SN= SR(f)SM= S). 

7 I am indebted to Professor Wigner for pointing out this fact. 

Then as we have seen, SR forms a sub algebra in @(O), 
and we obtain two contracted algebras defined by 

® (u) : [~,?)J<u) = u-I[ U~,U?)JR+ [U~,77JN+ U,u771v 

®(v): [~,?)J(v) = v-Ie V~,V77JR+[ V~,77JM+[~,V77JM 

for all ~,77fS. 
Then@(u) is isomorphic to @(v). 
Proof. Let E and F be projection operators defined, 

respectively, by the decompositions S=SR(f)SV and 
S=SR(f)SM. In other words, 

ES=SR FS=SR 

ESN=O FSM=O 

P=E=FE F2=F=EF. 

Now consider 
A =u-IvF+ (I-E)(I-F) 

(u- I is defined, for the purposes of this expression, by 
its action on SR). It is easily seen that A maps SR onto 
itself in a one-to-one way and that it maps SM onto Ss, 
annihilating nothing. The inverse of A is 

A-I= v-1uE+ (1- F) (1-E). 

We will show that 

(25) 

for all ~,77fS, which is then proof that ®(u) and @(v) are 
isomorphic. 

First let ~,77ESM. Then [~,77](v) = 0, and the left side 
of (25) vanishes. The right-hand side vanishes because 
A~ and A77 are in SN. 

Second, let ~,77E5R. Then 

A [~,77J<v) = AV-I[V~,V77JR= u-1Vtl-1F[ vF~,vF77JR 
=u-l[uA~,uA77JR= [A~,A77J(u). 

Here we have used the fact that Fs = s for all S in S R, 
as well as that A~ and A77 are in SR. 

Finally, let ~ESR, 77fSM. Then using the fact that 
As= (J - E)s for SESM, we have 

A[~,77](v)=A[v~,?)JM= (J-E)[uA~, E77+(I-E)77]M 

=[uA~,E77]N+[uA~, (I-E)7)JN. 

The first of these terms vanishes, for uA ~ and E77 are 
both in SR. As for the second, because 77fSM we may 
write 

(1- E)7)= (1-E) (1- F)7)=A?), 

and this is in SN, so that 

Thus (25) is verified for all ~,77ES, and the assertion 
is proved. 

We now turn to some examples of contractions. 
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3. Three-Dimensional Homogeneous Lorentz Group 

Consider the group of homogeneous Lorentz trans­
formations in two spacelike and one timelike 
dimensions. For physical reasons this group is usually 
contracted to the corresponding Galilei group. This is 
an IW contraction with a two-dimensional SI (cor­
responding to the two velocity components). Thus SR 
is one-dimensional (corresponding to rotations in 
space). But this Lorentz group has two-dimensional 
subgroups (its Lie algebra has two-dimensional sub­
algebras), so that it can be contracted with a two­
dimensional uS, and it is not necessary that US=SR. 
Let us therefore contract the group with a two­
dimensional uS, although this would seem to have no 
physical significance. 

Since dim (uS) = 2 is the rank of u, and dimS 1 is the 
nullity of 1t, we see that dimS 1 = 1. Then dimSR may 
be two, one, or zero (SR=O). We will classify the 
contractions by dimSR. 

The Lie algebra ®(O) of the three-dimensional homo­
geneous Lorentz group can be characterized by the 
fact that its derived algebra is three-dimensional and 
that it contains a two-dimensional subalgebra. 8 We 
need not make use of this second property specifically, 
since it will follow from the choice of nullity of u and 
the use of (17), which together guarantee that uS be 
two-dimensional and that it form a sub algebra in ®(O). 
::\1aking use of the first property and the well-known 
Jacobi identity, we can write the algebra quite generally 
in the form 

[aI,a2] = roaO+rlal+r2CX2 

[a2,ao]=rlao+slaI+s2a2 

[ao,al] = r2CXO+s2CXI+t2CX2, 

where ao, aI, and a2 span S, and the determinant 

I

ro rl r2 
Il= rl SI S2 :;CO. 

r2 S2 t2 

(26) 

(27) 

We will treat only one of the three cases in detail. 
The other results are obtained similarly, and the 
details will be found in D. 

First consider dimSR=O. Since U3S=SR=0, we have 
S3=S, Then it is easily seen that dimS2=2 (remember 
that dimSI= 1 by assumption). We choose in S vectors 
ao, aI, a2 such that 

uao=O (ao spans Sl) 

ual=aO (ao and al span S2) 

ua2=aI (ao, aI, and a2 span Ss=S). 

8 V. Bargmann (private communication). 

(28) 

Equations (28) are invariant under the transformation 

ao'=Aao 

at'=Aal+J.Lao 

a2' = Aa2+J.LaI+vao, 

where A, J.L, and v are numbers. 

(29) 

Now consider ~=ao and 1]=aI in (17). We have, 
noting that SN= S for this case, 

u2(r2CXO+s2aI+t2CX2) = t2CXO=O, 
so that 

12=0. 

Similarly, ~=a2 and 1]=ao gives 

S2=0, 
and ~=aI, 1]=a2 gives 

By using these relations we may rewrite (26), and then 
with this and (18) we obtain the bracket in ®(l). The 
results are 

[aI,a2]= roaO+rlaI+r2CX2 [al,a2](l) = 2rlao- r2CXI 

[a2,ao]= rlaO- 2r2CXI [a2,ao] (1) = -r2CXo 

[ao,al]=r2CXO [ao,al](I)=O. 

According to Eq. (27), Il= 2h)3:;c0, so that we may 
write 

1 rl 
A=--, J.L=--, 

r2 (r2)2 

and insert these expressions into (29). Then for the a;' 
we have (dropping the primes) 

[aI,a2] = - a2 [aI,a2] (I) = at, 

[a2,ao]=2aI [a2,ao](l)=ao, (30) 

[ao,aI] = - ao [ao,aI]<1) = O. 

This was the case with q= 3. The cases with 
dimSR=l (q=2) and dimSR=2 (IW contraction) are 
handled similarly. 

The three contracted algebras so obtained turn out 
to be isomorphic. Since q= 1 in the case of a two­
dimensional SR, all the contractions of the three­
dimensional Lorentz group are equivalent to IW 
contraction in the sense that the contracted algebra 
is always isomorphic to one obtained by IW contraction. 
One must be careful, however, in speaking of equivalent 
results. A given vector may play different roles in 
different contracted algebras. For instance, for dimSR 
= 1, the vectors whose ®(I) brackets are given by the 
second half of (30) have ®(O) brackets of the form, for 
instance, 

[aI,a2]= -a2 

[a2,ao] = kal +a2 

[ao,al]= -ao+al, 

(31) 
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subgroups (its Lie algebra has two-dimensional sub­
algebras), so that it can be contracted with a two­
dimensional uS, and it is not necessary that US=SR. 
Let us therefore contract the group with a two­
dimensional uS, although this would seem to have no 
physical significance. 

Since dim (uS) = 2 is the rank of u, and dimS 1 is the 
nullity of 1t, we see that dimS 1 = 1. Then dimSR may 
be two, one, or zero (SR=O). We will classify the 
contractions by dimSR. 

The Lie algebra ®(O) of the three-dimensional homo­
geneous Lorentz group can be characterized by the 
fact that its derived algebra is three-dimensional and 
that it contains a two-dimensional subalgebra. 8 We 
need not make use of this second property specifically, 
since it will follow from the choice of nullity of u and 
the use of (17), which together guarantee that uS be 
two-dimensional and that it form a sub algebra in ®(O). 
::\1aking use of the first property and the well-known 
Jacobi identity, we can write the algebra quite generally 
in the form 

[aI,a2] = roaO+rlal+r2CX2 

[a2,ao]=rlao+slaI+s2a2 

[ao,al] = r2CXO+s2CXI+t2CX2, 

where ao, aI, and a2 span S, and the determinant 

I

ro rl r2 
Il= rl SI S2 :;CO. 

r2 S2 t2 

(26) 

(27) 

We will treat only one of the three cases in detail. 
The other results are obtained similarly, and the 
details will be found in D. 

First consider dimSR=O. Since U3S=SR=0, we have 
S3=S, Then it is easily seen that dimS2=2 (remember 
that dimSI= 1 by assumption). We choose in S vectors 
ao, aI, a2 such that 

uao=O (ao spans Sl) 

ual=aO (ao and al span S2) 

ua2=aI (ao, aI, and a2 span Ss=S). 

8 V. Bargmann (private communication). 

(28) 

Equations (28) are invariant under the transformation 

ao'=Aao 

at'=Aal+J.Lao 

a2' = Aa2+J.LaI+vao, 

where A, J.L, and v are numbers. 

(29) 

Now consider ~=ao and 1]=aI in (17). We have, 
noting that SN= S for this case, 

u2(r2CXO+s2aI+t2CX2) = t2CXO=O, 
so that 

12=0. 

Similarly, ~=a2 and 1]=ao gives 

S2=0, 
and ~=aI, 1]=a2 gives 

By using these relations we may rewrite (26), and then 
with this and (18) we obtain the bracket in ®(l). The 
results are 

[aI,a2]= roaO+rlaI+r2CX2 [al,a2](l) = 2rlao- r2CXI 

[a2,ao]= rlaO- 2r2CXI [a2,ao] (1) = -r2CXo 

[ao,al]=r2CXO [ao,al](I)=O. 

According to Eq. (27), Il= 2h)3:;c0, so that we may 
write 

1 rl 
A=--, J.L=--, 

r2 (r2)2 

and insert these expressions into (29). Then for the a;' 
we have (dropping the primes) 

[aI,a2] = - a2 [aI,a2] (I) = at, 

[a2,ao]=2aI [a2,ao](l)=ao, (30) 

[ao,aI] = - ao [ao,aI]<1) = O. 

This was the case with q= 3. The cases with 
dimSR=l (q=2) and dimSR=2 (IW contraction) are 
handled similarly. 

The three contracted algebras so obtained turn out 
to be isomorphic. Since q= 1 in the case of a two­
dimensional SR, all the contractions of the three­
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where k is an arbitrary nonzero number (it depends on 
the exact form of u). These brackets are clearly not 
the same as those in the first half of (30), and thus 
involve different vectors. Particularly if physical 
significance is to be attached to general contraction, 
such differences may be important. 

Finally, it is interesting to complete the sequence of 
contractions in both cases where this is possible. 

For dimSR=O, using (30), we obtain 

®(3) : [ai,aiJ(3)=0 i,j=O, 1, 2. 

For dimSR= 1 we obtain 

®(2): [ai,ajJ(2)=0. 

For dimSR= 2, the contraction is IW, so there is only 
®(l). It can be shown also that all these are equivalent 
to others obtained by IW contraction from ®(O) 
(of course ®(3) of the first case and ®(2) of the second 
are in fact obtained by IW contraction of ®(O) by u3 

and u 2, respectively). 
The ®(O we have obtained is the Lie algebra of the 

inhomogeneous Lorentz group in one timelike and one 
spacelike dimension. 

4. Property of the Three-Dimensional Rotation Group 

Before going on to demonstrate a case of general 
contraction equivalent to no IW contraction, we show 
that the three-dimensional rotation group can be 
contracted in only one way (except for the trivial 
contraction).9 This contraction is IW contraction, and 
®(I) is the Lie algebra of the Euclidean motions in the 
plane. 

Proof. The Lie algebra of the three-dimensional 
rotation group can be characterized by the fact that 
its derived algebra is three-dimensional and it has no 
two-dimensional subalgebras. 8 We wish to find all 
possible u's by which this Lie algebra ®(O) can be 
contracted. 

First, since uS forms a subalgebra in ®(O) (and the 
rank of u is less than dimS=3), dim(uS) must be 1 
or o. We will not consider dim (uS) = 0; this is the trivial 
contraction. Thus dim (uS) = 1. Since SRc;;;.US, it 
follows that dimSR:::; 1. 

The case dimSR= 1 is just the IW contraction to 
the Euclidean motions (this contraction is discussed 
by IW), for then SR = uS, so that q= 1. We wish to 
show that it is impossible to contract with dimSR=O. 

If SR=O, then q=2. Indeed, let uS (of dimension 1 
by assumption) be spanned by a vector '1]. Then U= 0, 
for (1) U'l]fUS, and (2) u'l]-,.6.k'l] with k-,.6.0, or SR would 
not be empty. Thus for any ~fS we have u2~=u(r'l]) 
=ru'l]=O, where r is some constant, so that u2S=0. 

9 We call the trivial contraction the (IW) contraction with 
11=0. Every group can be so contracted, and the result is the 
n-dimensional Abelian group. 

Now it is a well-known fact that the Lie algebra of 
the three-dimensional rotation group can be represented 
by ordinary vector-space with the cross product 
defining the bracket. It is clear also from what has 
been said about u previously that there exist three 
linearly independent unit vectors aI, a2, a3 such that 

ual=ra2 

un2=uaa=0. 
(33) 

Since a2 and aa span a two-dimensional subspace, we 
may choose them as orthogonal unit vectors. Let 
al'=a2Xa3. Then writing ar'=Plal+p~2+P3a3, we see 
that we may choose al equal to ai" for a2 and a3 do not 
contribute to unl' (PI can be absorbed in r). Thus aI, 
a2, aa may be taken as an orthonormal basis. We now 
check (17). On putting ~=aJ, 'I]=aa, we have 

u(unIXaa) +u(aIX una) - uniX uaa 
=u(a2Xaa)=ual=ra2=0. (34) 

Thus r= 0, or U= 0 and the contraction is the trivial one. 
We see here an example of the way in which (17) 

eliminates what may seem at first a possible contraction. 
As will be discussed later, the group theoretical or 
Lie-algebra meaning of (17) is not entirely clear. 

5. Example of a General Contraction Equimlent 
toN a IW Contractions 

The last two paragraphs give examples in which 
either IW contraction alone is possible or in which any 
contraction is equivalent to IW contraction. We now 
give an example of a more general contraction. 

Consider the four-dimensional Lie algebra ®(O) 
defined by 

[ai,aoJ = O. 
(35) 

Here the first three equations give the Lie algebra 
ma of the three-dimensional rotation group. The 
algebra ®(O) is the direct sum of ma and the one­
dimensional algebra spanned by ao. We shall contract 
this by the mapping u defined by 

It will be convenient to deal with ®(O) in terms of 
aI, a2, 0:3, and f3 (rather than·ao). We remark therefore 
that ®(O) may be defined by 

ma 
(35') 

[f3,0:IJ=a2, [{3,a2J= -aI, [{3,aaJ=O, 

where by ma we mean just the first three equations 
of (35). 

To see that u will indeed give a contraction of ®(O) 
we note that SR=O and q=2 (so that u2 =0). Then 
(17) becomes 

u[ U~,'I]J+uU,U'l]J- [u~,U'l]J= o. 
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Now uS is one-dimensional, so the last term vanishes. in SR contribute nothing significant) write 
Further, uS is spanned by (3, and [(3.s-] is a linear 
combination of al and a2 for all 5". Since ual=ua2=0, uao=ao, ual=al, UO!2=uaa=0. 

the first two terms vanish separately, and hence (17) On using (18) we obtain 
is satisfied. 

Again recalling that SR=O, Eq. (18) becomes [al,a2](1)=aa, [a~,al]Cll=a2, (38) 

[~,'I7](I) = -u[~,ll]+[u~,'I7]+[~,Ull]. 

Then using (36) we obtain 

[al,a2] (I) -(3 
[a2,aa](I)=al 

[aa,al]Cll =a2 

[(3,ai] (1) =0 

which defines ®(I). 

(i= 1,2,3), 

(37) 

Incidentally, further contraction by the same u 
leads to the four-dimensional Abelian algebra, as is 
obvious from the fact that SR=O and q=2, so con­
traction by u2 is trivial. 

We will now show that this result cannot be obtained 
by IW contraction of ®(O). Although this can be proven 
differently (see Appendix II of D), we will do it by 
performing all possible IW contractions on ®(O). In 
the present case this is quite easy because the structure 
of ®(O) is particularly convenient. 

First, every two-dimensional subalgebra of ®(O) is 
spanned by ao and some PE~a. Indeed, let 2l"2 be a 
two-dimensional subalgebra. Then dim(2l"2n~a) is 
clearly either one or two (zero is impossible, since 
dim(2l"2+~3) is at most dim®(O)=4). As the inter­
section of two Lie algebras is itself a Lie algebra, 
2l"2n~3 must be a subalgebra of ~3. But ~a has no 
two-dimensional subalgebras. Thus dim(2l"2n~a)= 1. 
Let this intersection be spanned by some PE~a, and let 
2l"2 be spanned by p and aO+IT, where ITE~3. Then since 
2l"2 is a subalgebra, 

[ao+u, p]=[IT,p]=rp, 

where r is some number. Thus u and p form a sub­
algebra of ~a; they must therefore be linearly depend­
ent, and then 2l"2 is spanned by ao and p, and r=O. We 
may go one step further, and multiplying p by a 
suitable constant, replace it by al. For then it is 
always possible to find a2 and aa to satisfy (35). 

Second, ~3 is the only three-dimensional sub algebra 
of ®(O). Indeed, if 2l"a is such a subalgebra, then 2l"an~a 
must be of dimension two or three. But two is im­
possible, as in the case of 2l"2' so 2l"a and ~3 coincide. 

We will classify the IW contractions of ®(O) according 
to dimSR. Recall that once SR is chosen, SN, being 
irrelevant, can be chosen for convenience. 

Case (a). dimSR=3. Then (SR forms a sub algebra) 
SR is ~3' This contraction gives nothing new: ®(O) and 
the contracted algebra are the same. 

Case (b). dimSR=2. Let SR be spanned by an, at, 
and SN by a2, as. Then (nonsingular transformations 

and all other brackets vanish. 
Case (c). dimSR=l. 
1. SR spanned by ao and SN chosen as m3. This 

gives the four-dimensional Abelian algebra. 
2. SR spanned by aI, and SN by ao, a2, aa. On writing 

we obtain, using (18), 

[ar,a2](l)=a3, [a3,al](l)=a2, (39) 

and all other brackets vanish. This is seen to be the 
same as (38), or case (b). 

3. SR spanned by ao+al, and SN by an-aI, a2, a3. 
On writing 

u(ao+al)=aO+al, u(ao-al)=ua2=ua3=O, 

and using (18), we obtain 

[ao+al, a2](l)=a3, [a3, ao+al]<l)=a2, (40) 

and all other brackets vanish. This is again isomorphic 
to (38). 

Case (d), SR=O. This is the trivial contraction and 
gives the same result as case (c)1. 

Thus IW contraction of ®(O) gives algebras whose 
derived algebras are of dimension zero [cases (c) 1; (d)], 
two [cases (b); (c)2,3], and three [case (a)]. In the 
latter case the contracted algebra is ®(O) itself. The 
derived algebra of ®(l) given by (37) is of dimension 
three, but ®(l) is not isomorphic to ®(O). To see this 
it is sufficient to note that the center of ®(l) is in the 
derived algebra, which is not the case for ®(O). 

Furthermore, ®(Il cannot be obtained from contrac­
tion, IW or general, of any of our other algebras with 
lower-dimensional derived algebras [cases (b)- (d)]. 
In fact contraction never increases the dimension of the 
derived algebra. This follows from quite general consid­
erations. Assume the derived algebra of ®(O) to be of 
dimension l, that of ®(l) of dimension k. Let aI, .. " an 
span®(O), and consider the brackets [ai,aj]. These span 
the derived algebraof®(O). As X-->O, the brackets [ai,ajJ' 
= U(X)-I[U(X)ai,U(X)aiJ converge to the [ai,a;](l) and 
these span the derived algebra of ®(l). Now given a 
set of vectors 5"i(X) converging to some limit set of 
linearly independent vectors 5"i(O), it is clear in general 
that for small enough X the 5"i(}..) are also linearly 
independent. Thus if we choose from among the 
[ai,aj]<l) a set of k linearly independent ones, the 
corresponding [ai,aj]' are also linearly independent 
for small enough A. But so long as X;;z!'O, the algebra 
remains isomorphic to ®(G), and therefore there are at 
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least k linearly independent vectors in its derived 
algebra. Thus l?.k. 

In conclusion, we see that (37) defines an algebra 
that cannot be obtained from ®(O) by any number of 
IW contractions. 

6. Discussion 

The properties of the ®(i) deduced in the foregoing 
do not exhaust the information contained in Eqs. (17) 
and (18). That this is so is evident from the fact that 
we have so far been unable to state in a simple group­
theoretical way the content of these equations. It 
would be nice, for instance, to have a statement of the 
necessary and sufficient condition for contraction as 
simple as that given by IW (e.g., something like: 
a necessary and sufficient condition that ®(O) be 
contracted by u is that the uiS form subalgebras of 
®(O) for all i). No such statement equivalent to (17) 
has, however, been found. 

Some insight into the difficulty involved is seen 
when one writes (17) in the form 

This is a relation between the bracket of the mapping 
and the mapping of the bracket, but unlike for instance 
Eq. (19), it is quadratic in u. To obtain from it a 
general statement about the nature of ®(O) and u 
would seem to be quite difficult. 

All the foregoing analysis has been performed in 
the Lie algebras rather than in the groups. Since we 
have obtained the Lie algebra of the contracted group, 
we can find the corresponding universal covering 
group. We do not, however, know to which of the 
covered groups C(O) has contracted. If we were to 
study the way the topology of C(O) changes in the 
contraction (assuming it is known), we could find the 
topology of C(l) and hence which of the covered groups 
it is. 

Ko topological analysis has been undertaken, but 
some qualitative remarks can be made. We recall that 
we start by considering a vector x in C(O) and then 
turn our attention to x, which is given approximately 
by :r= UC;")x, or X= U-l("1I.)X (say for x so close to the 
unit element that we may neglect quadratic and 
higher terms in its components). Now consider a 
small "volume" near the unit element of CCO). Under 
U-l(A) this volume gets mapped into another, and the 
vectors defining this new volume are linear in l/A. 
Thus as A -+ 0, the new volume increases without 
bound. In other words, from the topological point of 
view we may think of the process as an expansion. 
The topology itself remains unaltered until "11.=0, when 
it may change. 

Consider, for instance, IW contraction of a group 
whose topology is that of a sphere. If Sl in the Lie 
algebra is one-dimensional (corresponding to a one­
parameter subgroup of CCO», the sphere is "stretched" 

into an ellipsoid, the topology remaining unaltered 
until "11.=0. In the limit, however, the major axis 
becomes infinite and the ellipsoid becomes a cylinder. 
Similarly, a group with cylindrical topology can be 
contracted into one with the topology of a plane. Thus 
we see that the connectivity of the contracted group 
may be either higher or lower than that of the original 
group. It seems equally clear that the contracted 
group is never compact. These topological remarks are 
of only qualitative nature and should not be taken 
too seriously. 

A more complete discussion of topology for a 
particular example will be found in D. In D also one 
will find an analysis of the meaning of the successive 
contractions on the group, rather than on its Lie 
algebra. 

II 

A. Concerning Finite-Dimensional 
Representations 

1. Saving a Representation 

We shall deal in this section with representations of 
Lie algebras. By an m-dimensional representation of a 
Lie algebra we shall mean a mapping D of the elements 
~ of a Lie algebra CS; onto m-dimensional matrices X 
such that 

It is well known that a linear finite-dimensional 
representation of a Lie group induces such a repre­
sentation of the group's Lie algebra. In this discussion 
we shall treat only finite-dimensional representations. 

A mapping U of ® into itself induces a mapping W 
of D in to itself according to 

D'W=WDW=D(U~). (43) 

Because D is linear, the matrix of TV is the same as 
that of U. In other words if aI, ... , an form a basis in 
®, and if DCa;) then 

1/= Wli=D(Uai)=D(U;iaj) U;ili. (44) 

Thus we may write U for W. 
Our concern will, as before, be with A-dependent 

U's, becoming singular when ;"=0, of the form 

U(A) =;..1+ (1-A)U. 

Then if ~€Sl and DW=X, we have 

UX=AX. 

(45) 

Thus when we go to the limit A= ° we find that 
®l (1) is represented by the null matrix. The representa­
tion obtained in this wav is therefore never faithful. 
(A faithful representatio~ is one in which DW=O if 
and only if ~=O.) 

This difficulty has already been pointed out by IW, 
who suggest two ways out of it, both involving varying 
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the representation in a A-dependent way. The first is 
to consider a sequence of representations which con­
verges to a representation of the contracted algebra. 
We shall not discuss this method here, although it is 
a very fruitful one. Since, in fact, the contracted 
group is never compact, this method must be used if 
the original representation of 0)(0) is finite-dimensional 
and one wants to obtain a unitary representation 
of (I,)(IJ. 

The second way out of the difficulty is to perform 
a A-dependent similarity transformation on D. The 
representation so obtained remains, of course, equi­
valent to D so long as A~O. In the limit it becomes a 
representation of 0)(1). The object of the similarity 
transformation being to keep the representation of SI 
from vanishing in the limit, let us try to find an 
m-dimensional matrix L(A) such that 

(46) 

for X =DW and for all ~ES. 
The problem we are faced with, then, is the following. 

Under what conditions is it possible to find an L 
satisfying (46) for which the representation of 0)(1) 

obtained will be a faithful one, what is an L that will 
produce this result, and what representations of 0)(1) 

can be so obtained? We shall say, when such an L has 
been found, that the representation is saved. Before 
proceeding, it should be noted that we have not been 
successful in solving this problem completely. We 
have, however, succeeded in discovering some proper­
ties of representations of ~J(1) obtained by saving 
representations of 0)(0), and it is to these results that 
this section is devoted. 

As was remarked previously, it is essentially SI that 
concerns us, so that the first problem is to find an L 
such that 

2. Saving a Matrix 

Let us first try to save a single constant matrix I 
(or a one-dimensional S 1) . We write 

J o= limJ x = limAL-I1 L~O, (47a) 

and assume L of the form 

L=L AaiLi, 

where the Li are A-independent, and i= 0, 1, ... , r 
(the ai are rational numbers, and we may set 
O=aO<al < ... <aT without loss of generality). Let 
d be the lowest common denominator of the ai, so that 
bi = dai are integers. Then writing 

A'=Al/d 

we have (dropping the prime) 

L=L AbiLi ; 

L is then what is called a A matrix. lO Equation (47a) 
now becomes 

Jo=limAdL-IIL~O, (47b) 
x--+o 

with L a A matrix. We shall attempt to find an L that 
will save I in the sense of (4 7b) for some integer d. 

Now it is knownlO that for any A matrix L there 
exist A matrices A and B with determinant one such 
that 

(48) 

Here the P ~ are polynomials in A, and the E~ are a 
complete set of projections (i.e., E~E.= 0 for p.~ lJ, 

while E~2=E~ and L~ E~= I). It is clear that the 
restriction to determinant one is not necessary. In fact 
for our purposes it will be convenient if the lowest 
power of A in each of the P~ has coefficient one. This 
is always possible to accomplish, given A and B, for 
instance by replacing B by 

where c~ is the coefficient of the lowest power of p. in 
P~ (and hence nonzero). For our purposes, then, we 
shall speak of A and B which exist and have inverses 
for O~A~ 1, and for which c~= 1 for every p.. Now let 
us assume that I is saved by L [in the sense of (47b)]. 
Then using (48) we see that AIA-l is saved by MB-l. 
Further, since B and B-1 exist when A=O, AIA-l is 
saved also by M. 

We may thus consider the following problem: to 
find A (A), which exists together with its inverse at 
A=O, such that AIA-l is saved by some M in the 
canonical form of Eq. (48). Then all possible AMB 
constructed out of such A (A), M, and B (A) (such that 
B(O) and B-l(O) exist) will reproduce all possible L's 
that save I. Further, we can increase the class of 
possible L's if we remove the restriction that A and B 
be A matrices (i.e., let their elements be irrational or 
transcendental functions of A). 

On proceeding, then, write 

A =A O+AA 1+A2A 2+··· 
and 

A-l=A o-l+A(Xl+ A2(X2+· .. 

for small enough values of A. The (Xi are easily calculated 
from the Ai, using the condition that AA-l= I be 
A-independent. 

Let us now write 

10 H. W. Turnbull and A. C. Aitken, An Introdllction to the 
Theory of Canonical Matrices (Blackie and Son, Limited, England, 
1932). 
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The Ii are easily calculated in terms of the Ai 
(through the O!i) and I. 

We can now put (47b) in the form 

1 0 =limXdBM-IAIA-IMB-1 
X->o 

= limB (XdM-1fM)B-l 
X->o 

=B(o)loB-l(O)~O (50) 

where we have used the fact that B(O) and B-l(O) 
exist, and have written 

10 =limXdM-1fM. 
A->o 

Now 10 will be nonzero if and only if 10 is nonzero. 
Consider, therefore, the requirement that 

1=)..dM-1fM 

have a nontrivial (nonzero) limit as A tends to zero, 
with M in the canonical form of (48). Note first that 

so that 

1 
M-l=L--EI" 

p. PI'(X) 

- _ d Py()..) -
I-X L--EI'IEy. 

p..y PI'(X) 

Since we shall be interested only in the limit, we need 
consider only the lowest power of X in each of the PI" 
Let this power be 11" Then 

10=liml =limL",.y )..d+I.,-II'EI'IEy. (51) 
A-O A-+O 

We now change the notation in the following way. 
First, if for some p~(J we have Ip=la, we write Ep+Ea 
=E/, In this way, to each value of 11' we have now 
only one projection operator. Equivalent to this would 
be to replace the canonical form of (48) by a form of 
the type 

(52) 

In fact we proceed in just this spirit with the EI' 
(dropping the primes on the newly defined E/), and 
writell 

{
OJ if i~ll' forany }J. 

E-= 
, EI' if i=ll' for some }J.. 

This is equivalent to allowing all positive integers in 
(52). Then (51) becomes 

1 0=lim Li.i Xd+i-iElE; 
A->o 

=lim L )..d+i-iHEjhEi, 
X->O i.i.k 

11 Note that the form of L then implies that Eor"O. 

where we have made use of (49). Finally, this can be 
written 

10= lim Lk Xd- k Li,j EliEj-i-k 
A->O 

if we write Ei=O for i<O. 
If this is to have any limit at all as X -> 0, the 

coefficients of the negative powers of X must vanish: 

Li.i EjI;Ei-i-k=O for k>d. 

Multiplying on the left and right by appropriate E's 
we arrive at 

EjI;Ej_i_k=O for k>d (NO SUM!). (53) 

The limit (nonzero by assumption) is then 

10= Lu Ejli Ei-i-d~O. (54) 

From this and (50) we get all the saved forms of I. 
Note that B(O) is a quite arbitrary nonsingular matrix, 
so that we may think of it as inducing a coordinate 
transformation in the carrier space of the representa­
tion. It is then clearly irrelevant. 

In order to discuss the meaning of (53) and (54), 
let us go to a coordinate system in which all of the Ei 
are diagonal. Then as IS well known, they can be 
represented in the form 

o 
1 
1 0 

0 0 
1 

Eo: 
1 

, Eil: , etc. 
0 
0 

0
1
0 

o 
o 

o 
Here i 1 is the lowest nonzero value of i for which Ei~O, 
and the first 1 in Eil appears on the main diagonal 
where the first 0 appears in Eo. In this coordinate 
system Eq. (54) signifies that 10 will have nonzero 
elements only to the left of the main diagonal and that 
these elements will be those of the 1;. Exactly where 
to the left of the main diagonal they will occur depends 
on d and on the E i • Equation (53) says that certain 
blocks to the left of the main diagonal must vanish 
in the I,. 

Recall that the problem was to find A (X). The 
problem is solved, to the extent that it is possible, by 
(53). Given d and M (or the Ei), the matrix A (X) 
must be such that the Ii calculated from it satisfy 
Eq. (53). There remains a great deal of arbitrariness 
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in this solution. First, d and the E; can be quite freely 
chosen. Second, even when they are chosen, Eq. (53) 
does not specify A (A) at all uniquely. 

One definite result of this discussion is that any 
matrix that is not a multiple of the unit matrix can be 
saved. (It is dear from the statement of the problem 
in (47b) that a multiple of the unit matrix cannot be 
saved.) For it is always possible to perform a 
(A-independent) similarity transformation (we then 
write A =Ao) such that Io=AoIAo-l has a nonzero 
element in the lower left-hand corner. Then let us 
choose d and the Ei so that d is the highest value of i 
for which Ei~O (recall that Eo~O). With this choice, 
Eq. (53) is automatically satisfied, for then either 
E j or Ej-,-k vanishes for k>d. As for (54), the only 
contribution comes when i=O andj=d; this necessarily 
includes the element in the lower left-hand corner, 
and so Jo~O. 

3. Saved RepresentaJion 

It is now evident that any single matrix can be 
saved if and only if it is not a multiple of the unit 
matrix. This does not mean that any representation 
can be save, even if D(Sl) does not contain the unit 
element. In order that the representation be faithful, 
all of the basic vectors must be represented by linearly 
independent matrices. Since the saved matrices of 
D(S!) will have elements only to the left of the main 
diagonal, there cannot be more than !m(m-l) of 
them if they are to be linearly independent. Thus if a 
representation is to be saved, it is necessary, though 
not sufficient, that 

dimSlS!m(m-l). 

The factor ! can be omitted if we allow complex 
representations of real algebras. 

In this connection it may be desirable to maximize 
the number of nonzero elements of the saved matrices 
in an effort to keep them linearly independent. One 
might hope even to make all of the elements left of 
the main diagonal nonzero. Unfortunately this is not 
always possible. We demonstrate this for a single 
matrix I which we assume saved in the sense of (47a). 

Let p be the degree of the minimal polynomial of 1.3 
Then (Jo)P=O. Indeed, consider 

(AL-IIL) l' = APL-Il1'L 

= Aap-lAP-lL-lI1'-lL+A2ap_zAP--2L-llp-zL 

+ .. '+APao, 

where the ai are the negatives of the coefficients in the 
minimal polynomial 

IP-ap_1lp-l_ ... -at! -ao=O. 

We then have 

(AL-IIL)p=Aap-l(AL-lIL)P-l 

+X2ap-z(AL-IIL)p-2+ . .. +APao. 

Because all the limits exist by assumption, we may 
allow A to tend to zero, obtaining (Jo)P=O. It then 
follows that 

(10)1'=0. 

Now Jo has elements only to the left of the main 
diagonal. Let the elements on the diagonal just to the 
left of the main one be jl, jz, h, "', jm, and let Ci be 
the ith basis vector in the coordinate system in which 
J o has this form. Then a simple calculation shows that 

(JO)IC;= j;j,+d,+2' . ·ji+l-1C,+I+f;.H+h 

where /i+l+l involves only e,+l+l, e,+1+2, etc. (here we 
write ji=O if i>m, and similarly for Ci). Since (10)1'=0, 
there can be no more than p-l nonzero ji in a row. 
Thus unless the minimal polynomial of I is of degree 
m some of the elements on this diagonal of Jo must 
vanish. 

The principal and final result of interest for the 
saved representation may be stated in the form of the 
following 

Theorem. Let A be the representation of 05(1) obtained 
by saving a representation of D of @(O). Then A is 
reducible (though not necessarily completely reducible). 
Further, in the irreducible components of A the ideal 
@1(1) (i.e., SI) is represented entirely by null matrices. 

Proof. Let D(Ci;) where the Cii form a basis in S 
(note that these Ii are then not the same as the I, 
discussed previously), and assume that a given L saves 
all of the h Then there exists an A (A) such that the 
li=AI,A-l are all saved by the same canonical M. 
Indeed, if we write ALB=M, we see that MB-l and 
therefore also M saves all the l,. Now let the saved 
matrices be Ii; i.e., 

limAdM-tJiM =Ji , 

11-+0 

and let B(O)JiB-l(O)=l;. From the preceding it then 
follows that all the Ji spanning A(Sl) have nonzero 
elements only below the main diagonal. Thus for any 
Ii spanning A(Sl) there is a coordinate system in the 
carrier space in which the J i all have nonzero elements 
only below the main diagonal. 

Let V be the carrier space on which A and D operate. 
Because of the form of the matrices in A(Sl), we have 

A(Sl)V = V1CV 

A(Sl)V1=V2CV1 

A(SI)Vq=O. 

[A(Sl)Vi is the space spanned by Xv, where XeA(SI) 
and VEV,.] 

Consider XeA(Sl) and YeA (S). Then because SI 
forms the ideal @l(n in @(l), 
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and Z maps V into VI. Now for any VEV we have 

Y(Xv)=X(Yv)-Zv. (55) 

Because X also maps V into VI, the two terms on the 
right are in VI, and hence so is their sum. Further, all 
vectors in VI can be written in the form Xv with 
XE~(SI)' We therefore conclude that 

YVICVl 
for all YE~(S). 

We could stop here, for we have reduced ~ and thus 
proven the first assertion of the theorem. It is, however, 
interesting and relevant to the proof of the second 
assertion that each of the Vi is invariant under 
(reduces) ~. 

To show this we proceed by induction. Assume that 
YViCVi for all YE~(S). We choose X and Y as before, 
and consider VEVi. Then we again arrive at (55), 
except that now both terms on the right are in Vi+!. 
Again, all vectors in V;+1 can be written in the form 
X~' with XE~(SI) and ~'EV;, so that we arrive at 

YVi+l~Vi+!. 

Thus in general we may write 

where 
v = Vo::) Vl~ V2::)· .. ~ Vq~ V q+l =0. 

This proves that the Vi reduce ~. 
The second assertion of the theorem can be proven 

(as the first could have been) by exhibiting the forms 
of the matrices in ~. We shall proceed differently, 
however. 

Let W, be subspaces of V such that W i EBVi+l=Vi, 
and let Pi be projection operators defined by some 
decomposition of the form V = WiEB T i+ l , where 
T i+l ;;2V i+l (i.e., P;V=W" P,2=P i , PiTi+!=O). Let 
v be a vector in Vi. We may write V=Vi+Vi+l, where 
Vi=PiVEW i , and Vi+!EVi+!. Now consider (with XE~) 

PiXV=PXVi+PiXVi+l' 

Since X maps Vi+! into itself, PiXVi+!=O. Thus 

PiXv=P;XP,v. 

It then follows, since for any VE V we have Y P·iVE V i if 
YE~, that 

(P;XPi) (P,Y Pi) = (PiXPi) (Y Pi) 

=P;XYPi. 

Thus the Pi~Pi form representations of @Cl); they are, 
indeed, reduced components of ~. They contain there­
fore all the irreducible components of ~. Now consider 
P;XPi for any XE~(SI)' Since for any v we know that 
PiVEWiCV i , and since X maps Vi into V i+l, we find 
that XPiVEVi+l . Then PiXPiV=O, which completes 
the proof. 

We thus see that the only irreducible representations 
obtained by saving are not faithful representations of 

the algebra. SI is always represented entirely by null 
matrices. 

It is known12 that any representation of a solvable 
Lie algebra can be made triangular (i.e., to have non­
vanishing elements only on and below the main 
diagonal). In our case ~(SI) is more than triangular, 
for all the elements on the main diagonal vanish. By 
saving D, therefore, we do not obtain all the repre­
sentations of@Cl). 

B. Exponents in Contraction 

1. Local Exponents 

In quantum mechanics one usually deals not with 
ordinary representations, but with ray representations. 
A unitary ray representation is a representation up to 
a factor by unitary operators. If D(x) and D(y) are 
the representatives of x and y in CCO), then 

D(x)D(y) =ei-yC;c.v)D(xy). 

This concept was first treated by Wigner13 and was 
subsequently discussed in detail by Bargmann.14 We 
will make use of Bargmann's terminology and results, 
though not his notation. 

A local exponent of a group ceo) is any real valued 
continuous function 'Y(x,y) which is defined for all 
elements x, y of some neighborhood and which satisfies 
the relations 

'Y(e,e) =0 

'Y(x,y) +'Y (xy,z) = 'Y(y,z)+'Y (x,yz) 
(56) 

(here e is the unit element of CCO»). A trivial, or zero­
equivalent local exponent is one for which there exists 
a function X (x) such that 

'Y(x,y) = x(x)+x(y) -x(xy). 

The question to which we direct our attention is 
the following. It is known that all of the local exponents 
for the Lorentz group are trivial. This is not true, 
however, of the Galilei group. How is it, then, that an 
exponent which starts out trivial becomes nontrivial 
when one goes to the limit A=O? It turns out that this 
problem has a quite simple solution. 

Consider a function X (x; A) which depends not only 
on x, but on the mapping <p (through A). Then for 
every A>O 

'Y(x,y; A)=X(X; A)+X(Y; A)-X(XY; A) (57) 

is a trivial local exponent, so long as by xy we now 
mean the A-dependent product,15 This is still a local 

12 See, for instance, E. B. Dynkin, Uspekhi Mat. Nauk 2, 59 
(1947). 

13 E. P. Wigner, Ann. Math. 40, 149 (1939). 
14 V. Bargmann, Ann. Math. 59, 1 (1954). 
15 If we treat the 'Pi of (5) as giving a sequence of mappings 

rather than of coordinate transformations (as we do in the Lie 
algebra), the product becomes X-dependent in accordance with 
Eq. (8). This is the sense in which we speak of "the mapping cp" 

and the "X-dependent product." 
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12 See, for instance, E. B. Dynkin, Uspekhi Mat. Nauk 2, 59 
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exponent for CCO), of course, for so long as A>O, the 
group given by xy remains isomorphic to CCO). 

Now if limx(x;A) as A~O exists, Eq. (57) gives a 
trivial local exponent of C(1) in the limit, for the 
product xy has as a limit the product in C(I). But even 
if xex; A) has no limit, 'Yex,y; A) may. Let us write 

lim'Y(x,y; A) ='Y CI) (x,y). 
>.->0 

Then 'Y(l) (x,y) is a local exponent (in general nontrivial) 
of C(l). To show this, one proves that 'Y(1)(x,y) satisfies 
equations similar to (56), namely, 

'YCI)(e,e)=O 

'Y(I) (x,y) +'Y CI) (xy,z) ='YCl) (y,z)+'Y CI ) (x,yz). 

Here the product is the contracted one (the product 
in C(l)). We will not attempt to prove this here, but 
shall rather pass to the Lie algebra. Considerations 
similar to those of the Appendix can be used then to 
pass from the Lie algebra to the group. Similarly, it 
will be more convenient to discuss in the algebra the 
(juestion of when the exponent so obtained is trivial. 

2. Lie Algebra 

To every equivalence class of local exponents there 
corresponds an equivalence class of infinitesimal 
exponents in the Lie algebra.14 An infinitesimal exponent 
is defined as a real valued antisymmetric bilinear form 
r(~,7)) defined on the Lie algebra, such that 

dre~,7),n=reU,7)J,n+r([7),n~) 
+r([UJ,7)) =0. (58) 

Such an infinitesimal exponent is called trivial if there 
exists a linear function X (~) defined on the algebra 
such that 

Then trivial infinitesimal exponents correspond to 
trivial local exponents, and vice versa. 

We now define a trivial infinitesimal exponent 

(59) 

[see Eq. (12)J, where for fixed O<A~ 1 the function 
X(~; A) is linear in~. Further, we assume that although 
limX(~;A) as A~O does not exist in general for all~, 

limr (~,7); A) = limX([~,7)J'; A) =rCl) (~,7)) 
\->0 >.---+0 

does exist for all ~,7). Then rCI) is an infinitesimal 
exponent on @Cl). 

Indeed, it is clear that rCI) is linear and anti­
symmetric. All that remains is to show that it satisfies 
an equation similar to (58), namely, 

dr(1) e~,7),n = r (1) ([~,7)J<1) J)+ rCI) ([7),ryl),~) 
+r(I)([r,~J(l),7))=O. (60) 

We proceed as follows. Consider 

limX([[~,7)]',r]'; A). 

Since by assumption lim[~,7)J' exists, we may write 

where 
P=[~,7)JCI), 

U(A) = L ui(A)ai=uia,. 

Here the ai, as usual, are basis vectors in S. The Ui(A) 
are functions of A (and of ~ and 7)) that vanish for all 
~ and 7) when A = 0; i.e., ui(O) = O. 

Since X is linear, we may thus write 

limX([[~,7)J',r]'; A) 
=limX([p+u(A), rJ'; A) 
=limX([p,~J'+[u(A),~J'; A) 
=lim{X([p,r]'; A)+uiX([ai,r]'; A)}. 

As all limits exist and ui(O)=O, we finally have 

limX([[~,7)]',r]'; A) = limX([[~,7)Jcl),I]'; A). 

We now return to (60). We have 

drcl) (~,7),n =limX([[~,7)JCl),r]'; A)+cyclic perm. 
= limX([[~,7)]',r J'; A)+cyclic perm. 
=limdr(~,7),I; A) 
=0. 

Thus r (1) is an infinitesimal exponent on 0) (1). 

rCI) is trivial if and only if there exists a linear 
function XCI)W such that X(l)(U,7)JCl))=r(l)(~,7)) for 
all ~,7)tS. Since XCI) is linear we may write 

XCI) W = Kifi, 

where the Ki are constants. Then 

rCI) (~,7)) = KiCjki(O)hk, 

where the Cjki(O) are the contracted structure constants 
(the structure constants of @(l)). On the other hand, 
we know that 

X ([~,7)]' ; A) = (), (A)Cjk i(A)hk 

converges to r(1) (~,7)) for all t7). Thus r(1) is trivial if 
and only if there exist constants Ki such that 

lim{(),(A)Cjki(A)} = KiCjki(O). (61) 
>.---+0 

It should be pointed out that although the Cjki(A) 
converge to the Cjki(O) by assumption, we also assumed 
[see (59)J that the 8i(A) themselves do not converge. 
If they do, (61) is automatically satisfied with Ki=8i (0). 

3. Inhomogeneous Two-Dimensional Lorentz Croup 

As an example we shall show how such exponents, 
both trivial and nontrivial, may arise in the usual IW 

CONTRACTION OF LIE GROUPS 17 
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It should be pointed out that although the Cjki(A) 
converge to the Cjki(O) by assumption, we also assumed 
[see (59)J that the 8i(A) themselves do not converge. 
If they do, (61) is automatically satisfied with Ki=8i (0). 

3. Inhomogeneous Two-Dimensional Lorentz Croup 

As an example we shall show how such exponents, 
both trivial and nontrivial, may arise in the usual IW 
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contraction of the inhomogeneous two-dimensional 
Lorentz group to the corresponding Galilei group 
(this is the contraction performed in the introduction). 
Later we will see what relation this has to physical 
requirements. 

The contraction is represented by going from Eq. (2) 
with A= 1 to Eq. (3) by passing to the limit in the 
reparametrization (4). Specifically, we write 

x=(v,y,r). 

and then the A-dependent multiplication law is 

We have seemingly repeated Eq. (4) of the introduction 
to emphasize that when we think of the contraction 
in terms of a mapping, we focus our attention on fixed 
elements (say Xl and X2) of the group, and allow the 
multiplication law to vary in a A-dependent way. 

Now consider the function 

x(x; A)= (mc2/h)r= (m/h';\2)r (63a) 

defined on the group. On inserting this into (57) and 
using (62), we obtain the trivial exponent 

'Y(X2,XI; A) = - (m/li){A-2[g2(A) -1Jrl+g2(A)V2yr}. 

In the limit as A -> 0, we have 

lim'Y(x2,xl; A) 
='Y(J) (X2,XI) = - (m/h)U~lbl+V2yd. (63b) 

This is a local exponent on the Galilei group, and it 
can be shown to be nontrivial. 14 Note, by the way, 
that xCx; A) is not defined in the limit as A tends to 
zero, yet the exponent it defines, as in the general 
discussion, tends to a limit. 

A similar procedure, also with a X that does not 
converge, may lead to a trivial exponent. Consider, 
for instance, the function 

xCx; A)= -~IA-2. 

A simple calculation will show that then 

which converges to 

by the usual formula [the analog of (57)J, and thus is 
trivial. 

Without going into detail we shall repeat this in the 
Lie algebra. For the two-dimensional Lorentz group 
we have 

[al,a2]=a3, [a2,aaJ=0, [a3,al] = -a2 

(al generates the pure Lorentz transformations, a2 the 
space translations, and aa the time translations). The 
contraction is obtained by the mapping 

U(A)al=Aal, U(A)a2=Aa2, U(A)a3=a3, 

so that 

and 

[aJ,a 2] (1) =0, [a2,a3] (l) =0, [a3,al](l)= -a2. (64) 

We now define 

X(~; A)= (m/liA2)~\ 

where ~3 is the third component of ~ (A2 is, of course, the 
square of A). Inserting this into (59) we have 

ra,71; A)= -(m/h)WTJl-~lrn 

Since this is A-independent, r(!)=r; for ®(O) this is a 
trivial infinitesimal exponent, for ®(J) a nontrivial one. 

The non triviality can be seen very simply in this 
case. Let us check it, however, using (61). With our 
choice of X(~; A) = (h(An i we have 

81=0, 82=0, 8a=m/hA2• 

The A-dependent structure constants are 

CIl(A) = -c2NA)=A2, C312(A) = -C132(A)= -1, 

and all others vanish. The contracted structure con­
stants are 

CsNO) = -Cli(O)= -1, 

and all others vanish. Thus the only nonzero expressions 
of the form 8icjk i are 

8,Cjki=83C123= -8sC213 = m/ft, 

while for any set of Ki, the only nonvanishing K;Cjki(O) is 

Thus (61) cannot be satisfied, and reI) is therefore 
nontrivial. 

On the other hand, the choice X(~; X)= -NA2 
(which corresponds to x= -V/A2) leads to r(!)=r=o, 
which is, of course, trivial. A nonvanishing trivial r(l) 
can be obtained, for instance, from X=~3/A+(Z. This 
gives 

'Y(l) (:t~2XI) = - (Vl+ V2)VIV2. which can be obtained from 

This 'Y(!) can be obtained, however, from the function X(l)(~)=Kl~1+K2~2 

X(l) (x) =v3/3, with arbitrary Kl, K2. 
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The exponent of (63b) arises when one deals with 
the transformation properties of a function satisfying 
the Schrodinger equation.14 •16 It may be deduced from 
the requirement that the Schrtidinger equation be 
invariant under GaliIei transformations. We might, 
however, also proceed differently. 

Starting with a wave function which is a solution 
of a relativistic equation (we will take the Klein~ 
Gordon equation) we may pass in the usual way to the 
nonrelativistic limit. By studying how the relativistic 
wave function transforms we can deduce a trans~ 

formation law in the limit for the nonrelativistic 
function. It will be found that a trivial exponent must 
be introduced if this transformation law is to converge. 
This exponent is not uniquely determined, but if 
chosen in agreement with (63a) the divergence is 
eliminated. It leads, of course, to the nontrivial 
exponent of (63b). 

Let us consider a positive-energy solution of the 
free-particle Klein-Gordon equation. We write (up to 
a normalizing constant) 

'l1(x) = f if.> (p)eip.xflidV 

where x= (x,ct) and p= I p, + (m2c2+p2)~1 are the 
position and momentum four-vectors, and dV is an 
invariant volume element. We shall not be concerned 
with questions of convergence; let us assume, therefore, 
that if.> drops off sufficiently rapidly at infinity to 
provide convergence of the integral. As we shall be 
interested in the nonrelativistic limit and are not 
concerned with normalization, we choose a volume 
element which has a limit as 1/ c approaches zero: 

We have written p·x=cpOt-p·x. In the preceding 
expression for 'l1 all of the c dependence is exhibited, 
except that if.> may depend on c through pO. We shall 
assume that this c dependence is absent in a given 
coordinate system, and it then follows that in any 
other coordinate system related to the first by a 
homogeneous Lorentz transformation the c dependence 
is such that if.> has a limit as 1/ c tends to zero 
(see the following). 

Since 'l1(x) is a scalar function, we know that under 
a Lorentz transformation A it transforms according to 

'l1' (x) = 'l1 (A-IX). 

A simple calculation using the invariance of dV 
and p·x under Lorentz transformations then shows 
that the momentum-space wave function transforms 
according to 

if.>'(p) = if.> (L-lp) (65a) 

l~ W. Pauli, Handbuch der Physik (Springer-Verlag, Berlin, 
1933), Vol. XXIV, p. 1. 

if A=L is a homogeneous Lorentz transformation. If 
we assume if.> to depend only on p (not on pO) and 
hence to be c independent, we see that if.>' depends on c. 
But this dependence is through the space components 
of L-lp, and these have limits as 1/c-+0. Thus if.> has 
a limit as l/e tends to zero. 

A similar calculation shows that 

if.>' (p) = if.> (p )eip .v/Il (65b) 

if A is a translation by the four-vector y=::: (y,CT). 
Now let us consider the Fourier expansion of 'l1 in 

more detail. We have 

= f dVif.>(p)e ip • r / 1i 

Xexp[-imc2t(1 +p2/2m2c2+ . •. )/liJ 

=e-iEt'''f dVif.>(p)eip .r / 1i 

Xexp{ -i[p21/2mli+O(1/c2)J} , 

where E=mc2 goes as c2• Thus 'l1(x) has no limit as 
1/c-+O, but 'l1(x)eiE t lh has a limit. We then define the 
nonrelativistic wave function as 

y;(x,t) = lim'l1(x)eiEtlh 
<->00 

The multiplication by e-iEt /h corresponds just to 
subtracting out the rest energy from the wave function, 
or calculating the energy, as one ordinarily does in 
nonrelativistic mechanics, with respect to this rest 
energy. 

We now compare this expression with the relation 
(again disregarding normalization) 

",(X,t) = J d3N(p) exp[i(p,x-p2t/2m)/h] 

for the nonrelativistic free particle. Then the non~ 
relativistic momentum-space wave function can be 
seen to be given in terms of the relativistic one by 

tjJ(p) = limif.>(p). 
<-+00 

We now define the transformed nonrelativistic function 
by 

tjJ' (p) = limif.>' (p). 
c-->oo 

This leads to the following transformation laws for q,. 
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(a) A pure rotation R: 

f/JR(P) =f/J(R-Ip). 

(b) A pure Lorentz transformation to a frame moving 
with velocity v: 

f/Jv(p) =f/J(p-mv). 

(c) A space translation by an amount y: 

f/Jy(p)=f/J(p) exp( -ip' y/h). 

(d) A time translation by an amount r: 

f/JT(p)=lim<I>(p) exp(ipocr/h). 
c--+oo 

This last expression has no limit. We can overcome 
this difficulty by introducing an exponent into (65b). 
Since this will introduce just a phase factor, it involves 
no physical change. 

We may write 

<I>(p) exp(ipOcr/h) 
=<I>(p) exp[imc2r(1 +p2/2m2c2+ . .. )/hJ 
=eiET/h<I>(p) exp{i[p2r/2mh+0(1/c2)J}. 

It is seen that a natural choice for the exponent is that 
of (63a), for this involves just multiplying by e- iET/1i 

and thus eliminating the factor that fails to converge. 
We thus replace (65a) and (65b), respectively, by 

where 

<I>'(p) =w(A)<I>(L-Ip), 

<I>' (p) =w(A)<I>(p )e ip •
y/Ii, 

w(A) = e- iET/"', 

and r is the time translation in A. Note that it is just 
this kind of p-independent factor we would like to 
introduce into the transformation law for the wave 
function. With it our results (a), (b), and (c) remain 
the same, and (d) becomes 

f/JT(P) = f/J(p) exp(ip2/2mh). 

As was mentioned, this gives the correct transformation 
law for the Schrodinger-equation wave function 
[i.e., (63a) leads to the nontrivial exponent of (63b)]. 
We have obtained it here from the requirement that 
the relativistic wave function transform in a way that 
has a nonrelativistic limit. 

4. Concluding Remarks 

With respect to representations, the major out­
standing problem is that of infinite-dimensional 
representations, which is certainly of greater interest 
both from the physical and mathematical points of 
view. One question that may be asked, for instance, 
is whether or not all unitary representations of the 
contracted group can be obtained from those of the 
original group. 

Another problem involving contraction, particularly 
interesting from the physical point of view, is to find 

all groups (or algebras) that contract to a given one. 
Work is being undertaken in both of these directions. 

ACKNOWLEDGMENTS 

I wish to express my very deep gratitude to Professor 
Valentine Bargmann for suggesting the work and for 
his constant interest and invaluable aid. I also thank 
Professor Eugene P. Wigner for his careful reading of 
the original manuscript and helpful comments, and 
Dr. William T. Sharp for many interesting and useful 
discussions. 

My thanks are due also to the National Science 
Foundation for the Science Faculty Fellowship. 

APPENDIX 

It can be shown that a limit for the multiplication 
law follows from a limit for the structure constants. 
A proof of this assertion is sketched in the followingY 

Let 
(Ai) 

define a norm in the Lie algebra for any ~ (the ~i arc 
the coordinates of ~ in some coordinate system). It is 
then a simple matter to show that 

where 
'Y=[L: /Cjk i

/ 2Ji. 
i,j,/c 

We may define a norm in the Lie group in the same 
way, using canonical coordinates. That is, if ~ is 
mapped by the exponential mappingl8 onto the group 
element exp~=x, the canonical coordinates of x are 
the ~i. Henceforth, then, in this Appendix we will use 
the same symbol ~ for the element of the algebra and 
the group element x. Then the norm of the group 
element ~ is again given by (Ai). 

We shall prove the original assertion in terms of this 
norm in canonical coordinates. 

Now in canonical coordinates the group product can 
be expressed by the Baker-Hausdorff series. This 
means that if ~ and." are elements of the group, their 
product t= ~ can be written in the form 

where the tl are given by the recursion relation 

to=O, 
tl=~+"', 

(l+l)tl+l =~G-.", tlJ 
+ L: K2mU !'l[t!'£ ... U !'2m, ~+."J ... ]. ----

(A2) 

(A3) 

17 The method of proof is due to Professor Bargmann. 
18 P. M. Cohn, Lie Groups (Cambridge University Press, 

New York, 1957). 
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product t= ~ can be written in the form 

where the tl are given by the recursion relation 

to=O, 
tl=~+"', 

(l+l)tl+l =~G-.", tlJ 
+ L: K2mU !'l[t!'£ ... U !'2m, ~+."J ... ]. ----

(A2) 

(A3) 

17 The method of proof is due to Professor Bargmann. 
18 P. M. Cohn, Lie Groups (Cambridge University Press, 

New York, 1957). 
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Here the sum is taken over all positive integers m and 
JJ.. such that JJ.l+JJ.2+·· ·+JJ.2m=I. The K2m are the 
coefficients in the power-series expansion 

t t 00 

- coth- = L K2mt
2m 

2 2 0 

(they are related to the Bernoulli numbers). The 
bracket operation in (A3) is, of course, defined for the 
elements in the Lie algebra, but the results of the 
operations are then interpreted as elements in the Lie 
group with the given canonical coordinates. This 
defines the Baker-Hausdorff series. 

It can be shown that with the norm of (AI) this 
series converges uniformly for I ~ I + 1111 :::; 7r /4')'* (where 
')'*>')'), or in a hypersphere of radius 7r/(8')'*). Very 
roughly, this may be proven in the following way. By 
using (A3) and the values of the K2m, one shows that 

(1+1)ltl+d:::;( L kn,),nltl'll"'ltl'n/)o, (A4) 
n~~l'i=1 

where 

One then considers the power series 

](Z)=LaIZI, 

whose coefficients are defined by 

ao=O 

(1+ l)a/+l = ( L kn')'na1 · . ·an)o. 
n~~l'i=1 

(AS) 

It is clear that I fd :::;al, so that convergence of the series. 

(A6) 

is implied by convergence of (AS). By noting that 
d]/dz=4o(1-,),]/27r)-1 and solving for] with the con­
dition ](0) =0, one finds that 

]= (27r/'Y)[1- (1-4')'oz/7r)!] (A7) 

(take the positive root), which means that (AS) 
converges for z:::;1r/4,),o. Since we are dealing with a 
power series, the convergence is uniform on any closed 
set entirely within the circle of convergence, or for 
z:::;1r/4o,),*, where ')'*>')'. If we set Z= 1, Eq. (A6) gives 
t, and we thus find that the Baker-Hausdorff series 
converges uniformly if 

(A8) 

(or in a hypersphere of radius 11'/8')'*). 
Now consider a sequence of structure constants 

converging to a limit, and hence a sequence of ')"s with 
a limit. Let ')'* be greater than all the ,),'s of the sequence 
(or greater than all ')"s past a certain one). Then for () 
given by (A8) the Baker-Hausdorff series converges 
uniformly, and the multiplication law is thus a con­
tinuous function of the structure constants. It thus 
approaches a limit together with the structure 
constants, and this limit is obtained in the usual way 
from the limit values of the structure constants (e.g." 
by the Baker-Hausdorff series). 
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By using the fact that a plane electromagnetic wave is described by two Lorentz invariant statements, 
a complex orthogonal representation of the Lorentz group, including charged fields, is discussed. The 
representation provides the possibility of a combined study of the P, C, T symmetry operations for spin t 
and spin 1 fields. In particular, the chargelessness of the neutrino as a complex fermion field results from 
a reducible three charge states representation of the complex group. 

1. INTRODUCTION 

I T is well known that to every relativistic quantum­
mechanical system of equations corresponds a 

representation of Lorentz group. The knowledge of a 
certain representation of Lorentz group is a more 
general concept than a particular quantum-mechanical 
equation. It is, therefore, quite desirable to further 
discuss the known representations of Lorentz group. 
In this paper we consider some simple features of the 
three-dimensional complex representations. 

Real orthogonal transformations in three-dimensional 
Euclidean space are homomorphic onto unitary trans­
formations in the spinor plane. The proper Lorentz 
transformations as a six-parameter representation of 
homogeneous Lorentz group, together with improper 
Lorentz transformations, can be expected to have a 
complex orthogonal representation. 

The three-dimensional unitary space, because of its 
Euclidean nature and also because of the requirement 
of eight parameters for the irreducible representation 
of the three-dimensional unitary unimodular group, 
cannot be used for the representation of homogeneous 
Lorentz group. For the representation of the Lorentz 
group we may envisage a three-dimensional linear 
manifold spanned by the special type of complex 
vectors formed from the space and time components of 
an antisymmetric tensor field. 

A representation of the Lorentz group by a three­
dimensional complex orthogonal group is also suggested 
from the fact that the Lorentz invariant path length 
dp2=O of a plane electromagnetic wave can be replaced 
by the two Lorentz invariant statements that the 
electric and magnetic vectors of the wave are (i) of 
equal magnitude and (ii) perpendicular to one another. 
At each point of the wave we can set up an "invariant 
coordinate system" with electric vector E and magnetic 
vector H by choosing the third axis of the coordinate 
system in the direction of its spin. 

II. COMPLEX' GROUP 

Let CPa{3 be any four-dimensional antisymmetric 
tensor function of coordinates and time. We define a 

22 

complex three-dimensional ket-vector I X) by 

Ix)~ [~:l (II.1) 

where 

and CP4i and CPij are time and space parts of CPa{3- The 
Latin and Greek indices run from 1 to 3 and 1 to 4, 
respectively_ The quantities Eijk are the usual three­
dimensional Levi-Cevita symbols. 

We shall use the symbol (x I to mean just the 
transpose of the ketIX), while the symbol (Xl for the 
transpose and complex conjugation of the ket I x), viz., 

(x I = [XJ,X2,XaJ 

(x 1= [Xl*,X2*,X3*J= (I x»t. 

We must distinguish between the two ways of 
squaring of a complex vector I X) belonging to the 
three-dimensional complex space: 

(i) Lorentz invariant square of I X) is 

(x [X) =X12+X2
2+X32. (II.2) 

(ii) Hermitian (or gauge-invariant) square of Ix) is 

(II.3) 

The expression (I1.3) is invariant with respect to a 
gauge transformation 

(II.4) 

where o(x) is an arbitrary invariant function of space 
and time. All vectors of the complex three-dimensional 
manifold are of the form (IlA) or its complex conjugate. 

The ket I x.) can further be qualified as a complex 
vector by its transformation properties. For this 
purpose we introduce complex orthogonal trans­
formations which leave Eq. (II.2) unchanged. If R is 
the transformation matrix of a complex ket, we obtain 
another ket belonging to the same complex space by 

Hence 
I x')= R I x.)= Rei.' x). 

(X'I X') = (X, eioRtReio , X), 

(II.S) 

so that the invariance of Eq. (II.2) under R trans­
formations requires that all R transformations must 
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satisfy the conditions 

RR= RR= e-2i", (II.6) 

where R is the transpose of R. These conditions on R 
correspond to six complex or 12 real equations so that 
of the 18 parameters (plus the phase 0) fixing R only 
six are independent. The six parameters together with 
a given o(x) will fix a member of the complex group 
[or extended complex group for o(x);=:O]. 

We shall be interested in the two subgroups of the 
extended group corresponding to special values of 
gauge parameter o(x). 

(i) o(x)=O, o(x)=1r, and 

RR=RR=!a. (II. 7) 

This is the complex orthogonal group. The determinant 
of R is + 1 or - 1. Thus, as in the real group, one has 
to distinguish between pure complex rotation group 
with determinant + 1 and rotation-reflection group 
which includes transformation matrices with deter­
minant -1. The identity element of the group is the 
unit matrix la. Because of the nonunitary character 
of R, its eigenvalues are not all of unit magnitude. 

(ii) o(x)=t1r and 

RR=RR=-!a. (11.8) 

This is the antiorthogonal group. The determinant of 
R (in cases where it exists) in this case is +i or -i. 
We shall see that antiorthogonal R transformations 
are equivalent to antilinear operationsl on the vectors 
of the complex space. 

The complex conjugate of any ketlX) is transformed 
by the complex conjugates of R transformations 
satisfying the orthogonality and antiorthogonality 
conditions, 

R*R*=R*R*=/3, (II.9) 
and 

R*R*=R*R*= -h (II. 10) 

respectively. If C is the operator of complex conjugation 
(antiunitary operator), then it can operate on I X) to 
yield 

jX*)=CjX) 
and 

j X'*)=C I X')=CRI x)= CRC j X*)=R* j x*), 

where we used the antiunitary property2 

C2= 1. (ILl 1) 

of the group by assuming that it is a continuous 
function of an arbitrary parameter T. In this case, 
from differentiating Eq. (II.7), it can easily be shown 
that R satisfies the equation 

idR/dT=ZR, (ILl 2) 

where Z is a complex antisymmetric 3X3 matrix, i.e., 

and 

0 

Z~i[ a,+w, 
-a2-ib2 

Z=-Z, 

-aa-iba 

0 

"al+ib1 

-al-io l 

a,+ih'] 
0 

3 

= 'E [aiKj+ioiKj], (lI.13) 
i-I 

where ai and oj (j= 1,2,3) are real numbers, and K j are 
the spin matrices of the electromagnetic field and are 
given by 

0 -iO;3 

W"] Ki~ [ i'i' 0 -~Ojl . (II. 14) 

-ioj2 iOj1 

The Hermitian matrices Kj together with the anti­
Hermitian matrices iKj are the generators of the 
complex infinitesimal rotations in complex space. 

For r-independent Z the typical R transformations 
are given by 

Rl = exp[i (",+iX)K IJ 
R 2= exp[i(lf>+iE)K2] 

Ra=exp[i(8+ip)Ka]. 

(II.1S) 

A Lorentz transformation of the electromagnetic 
field can be affected by a complex orthogonal matrix. 
For example, the transformation by Rl corresponds to 
a rotation around Xl direction by an angle '" and a 
uniform motion along the same direction with a 
velocity v, where 

From 

we obtain 

X1'=X I 

tan1/-'=v/c. 

(II. 16) 

For the proper complex orthogonal group a member X2'='Y[X2(COS",-i-
c
'lI Sin",) 

R of the group can be connected to the unit element I a 

1 E. P. Wigner, Group Theory (Academic Press, Inc., New York, 
1959), contains a detailed discussion of antilinear operations in 
physics. In connection with a discussion of vacuum expectation 
values of time-ordered products of field operators, D. Hall and 
A. S. Wightman have introduced a complex representation of 
Lorentz group [Kg!. Danske Videnskab. Selskab, Mat.-iys. 
Medd. 31, No.5 (1957)J. Their discussion is, however, meant for 
quite a different purpose and is not directly related to the present 
work. 

t The subgroup of the extended group considered here is a four 
branch group corresponding to four different values of the 
determinants of R transformations. 

(II.17) 

+x{sin",+i;Cos",) ] 

Xl ='Y[ - X2( sin",+i; cos"') 

+xa( COS"'-i; sintlt) ]. 
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where 
1'= (l-v2/c2)-t. 

For 1/;=0, these are the usual Lorentz transformation 
formulas of the electromagnetic field. 

III. CHARACTERISTIC MATRICES OF 
THE COMPLEX GROUP 

As a simple example to illustrate the role of complex 
group we consider the complex keth> defined by 

(IlLl) 

where pp. is the momentum four-vector of a particle 
and Xp. are the transpose of Kp. and where 

K4=K4=Ia, Xi= -K i • 

We shall use the Lorentz metric ap" defined by 

to raise and lower tensor indices. The symbol F cor­
responds to the matrix form of ap.., 

(IlI.2) 

Now, the Lorentz invariance of Eq. (IlI.l) can be 
studied by forming the quantity 

where 

and 

Hence 

(lIh)= (XIKP.pJ(vp.lx), 

KllpJ(·P.= P42- (K· p)2, 

(K·p)2= p2-pp. 

(11111)= (x 1 Pl'plllX)+ (p.Z':)2, 

which with the condition 

P'Z':= PtX1+P2X2+PaXa=0, (IlI.3) 

becomes a Lorentz invariant expression. In particular, 
if 111)=0 and pp.= -iha/axl', then Eqs. (IlI.l) and 
(IIl.3) are Maxwell's equations for charge free electro­
magnetic3 field, 

ih(a/at) I x)=Hlx), 

of the field, can be based on the transformation proper­
ties of energy and momentum of the electromagnetic 
field in the complex representation. 

We first note that any symmetric tensor Til' of the 
Maxwellian form 

satisfies 

where 

Furthermore 

where we took 

n=~qrtPp., 

A=tl"PtPp., 
11"= ~€I',,,,(3tP,,,(3. 

(IIl.6) 

(IlI.7) 

A comparison of Eq. (IlLS) with the square of a 
momentum vector p", of a particle suggests that there 
exists a Lorentz covariant representation of energy 
and momentum properties corresponding to a field 
tPp. •. Thus if we take 

PI'=c-1T""V', (III.9) 
then we obtain 

c2p'P",= Tp.p VpTp."V .. = I)"PVp V"(tn2+A2) = i-n2+A2, 

where Vp. is a unit vector 

VIlVIl=1. 

The vector p", defined by Eq. (IlI.9) reduces, for 
V.=O, to the usual definitions for P4 as energy density 
HW+Jl2) and Pi as momentum density EXH. 

The complex space representation of PI' and T 1-" can 
be obtained, by inspection, as 

p,,= (l/2c)(xIBp. vV'lx), 

Tllv=i(xIB".lx), 

(IILlO) 

(IlI.1l) 

(IlI.4) where the 10 3X3 matrices BI" are given by 

where B 44=K4=Ia, B4i=Bi4=Ki 
H=cK-p. (III.S) Bij= B ji = KiKi+KjKi-IaOi;, 

(III.12) 

For the kets 1 x) satisfying Maxwell's equations 
(IlIA) and (IlLS) the corresponding space is a special 
representation of the more general complex space. In 
this case KI' matrices (to be shown later) transform 
like a four-vector. The most general discussion of the 
complex space, without the restriction of chargelessness 

3 This type of equation was first discussed by J. R. Oppenheimer 
[Phys. Rev. 38, 725 (1931)J, and more recently W. J. Archibald 
[Can. J. Phys. 33,565 (1955)J and R. H. Good [Phys. Rev. 105, 
1914 (1957)J have investigated further quantum-mechanical 
implications of such an equation. Four-dimensional representa­
tions have been discussed by H. E. Moses [Nuovo cimento. Suppl. 
7, 1 (1958)J; see also J. S. Lomont, Phys. Rev. 111, 1710 (1958). 

and, like TI" itself, they satisfy the trace property 

(IlLl3) 

For Vi=O, the vector PI' defined by Eq. (III.lO)­
reduces to 

(III.14) 

All B matrices are Hermitian and Bi and B4i=Ki 
satisfy 

B12+B22+Ba2= 213, 

K12+K22+Ka2= 2Ia. 
(III.lS) 
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We shall use the Lorentz metric ap" defined by 

to raise and lower tensor indices. The symbol F cor­
responds to the matrix form of ap.., 

(IlI.2) 

Now, the Lorentz invariance of Eq. (IlI.l) can be 
studied by forming the quantity 

where 

and 

Hence 

(lIh)= (XIKP.pJ(vp.lx), 

KllpJ(·P.= P42- (K· p)2, 

(K·p)2= p2-pp. 

(11111)= (x 1 Pl'plllX)+ (p.Z':)2, 
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ih(a/at) I x)=Hlx), 

of the field, can be based on the transformation proper­
ties of energy and momentum of the electromagnetic 
field in the complex representation. 

We first note that any symmetric tensor Til' of the 
Maxwellian form 

satisfies 

where 

Furthermore 

where we took 

n=~qrtPp., 

A=tl"PtPp., 
11"= ~€I',,,,(3tP,,,(3. 

(IIl.6) 

(IlI.7) 

A comparison of Eq. (IlLS) with the square of a 
momentum vector p", of a particle suggests that there 
exists a Lorentz covariant representation of energy 
and momentum properties corresponding to a field 
tPp. •. Thus if we take 

PI'=c-1T""V', (III.9) 
then we obtain 

c2p'P",= Tp.p VpTp."V .. = I)"PVp V"(tn2+A2) = i-n2+A2, 

where Vp. is a unit vector 

VIlVIl=1. 

The vector p", defined by Eq. (IlI.9) reduces, for 
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HW+Jl2) and Pi as momentum density EXH. 

The complex space representation of PI' and T 1-" can 
be obtained, by inspection, as 

p,,= (l/2c)(xIBp. vV'lx), 

Tllv=i(xIB".lx), 

(IILlO) 

(IlI.1l) 

(IlI.4) where the 10 3X3 matrices BI" are given by 

where B 44=K4=Ia, B4i=Bi4=Ki 
H=cK-p. (III.S) Bij= B ji = KiKi+KjKi-IaOi;, 

(III.12) 

For the kets 1 x) satisfying Maxwell's equations 
(IlIA) and (IlLS) the corresponding space is a special 
representation of the more general complex space. In 
this case KI' matrices (to be shown later) transform 
like a four-vector. The most general discussion of the 
complex space, without the restriction of chargelessness 

3 This type of equation was first discussed by J. R. Oppenheimer 
[Phys. Rev. 38, 725 (1931)J, and more recently W. J. Archibald 
[Can. J. Phys. 33,565 (1955)J and R. H. Good [Phys. Rev. 105, 
1914 (1957)J have investigated further quantum-mechanical 
implications of such an equation. Four-dimensional representa­
tions have been discussed by H. E. Moses [Nuovo cimento. Suppl. 
7, 1 (1958)J; see also J. S. Lomont, Phys. Rev. 111, 1710 (1958). 

and, like TI" itself, they satisfy the trace property 

(IlLl3) 

For Vi=O, the vector PI' defined by Eq. (III.lO)­
reduces to 

(III.14) 

All B matrices are Hermitian and Bi and B4i=Ki 
satisfy 

B12+B22+Ba2= 213, 

K12+K22+Ka2= 2Ia. 
(III.lS) 



                                                                                                                                    

REPRESENTATION OF LORENTZ GROUP 2S 

The K matrices as spin-1 matrices satisfy the usual 
commutation relations 

(III. 16) 

IV. TIME REVERSAL AND ANTIORTHOGONAL 
TRANSFORMATIONS 

The transformation properties of B matrices under 
Lorentz transformations can be derived from the 
vector and tensor transformation properties of pp. 
and Til' as defined by Eqs. (IILlO) and (III. 11), 
respectively. 

The tensor T 1" in another Lorentz frame has the 
form 

T ' l( 'IB ! ') Il' =2 X p.vlX, (IV. 1) 

where I x') is a function of the new coordinates X,/ 
related to the old coordinates XI' by a Lorentz 
transform a tion 

Ix')=Llx), (IV.2) 

where L is a Lorentz matrix satisfying 

LFL=F, (IV.3) 

and I x) is the column vector of the coordinates and 
time. The ket I x') is transformed by an R trans­
forma tion, according to 

!x')=Rlx}. (IVA) 

Application of these transformations to Eq. (IV.1) 
and the requirement that transformations should hold 
for all vectors of complex space, yield the trans­
formation rules of B matrices, 

(IV.S) 

The R matrix is a function of the coefficient Lila alone. 
For proper Rand L transformations there exist an 
isomorphism between Land R matrices satisfying Eq. 
(IV.S). The Lorentz matrices corresponding to R1, R2, 

and R3 [see Eq. (ILlS)], are given by 

L1(t/I) .. ), L2(cJ>,~), L 3(rr,p), 

corresponding to rotations and velocity transformations 
for Xl, X2, X3 directions, respectively. 

The symmetry properties of the complex space are 
of great physical interest. We shall study some of 
these properties by the application of the improper 
Lorentz transformations corresponding to Lorentz 
matrices F, and -14. Now, F and -F correspond 
to space and time reflection transformations of co­
ordinates, respectively. In complex space, the corre­
sponding transformations can be obtained by replacing 
the coefficients Lp.a of the Lorentz matrix L by all", 
leading to 

(IV.6) 

Hence various B matrices transform according to 

RtR=1 

RtK;R=-Ki 

(IV. 7) 

(IV.8) 

(IV.9) 

We shall study five different R transformations 
satisfying Eqs. (IV.7)-(IV.9). 

(i) The R transformation corresponding to the F 
metric in Lorentz space can be taken to be the parity 
operator <p which is a linear unitary space reflection 
operator and transforms the B matrices according to 

<P2=1 

(j>-IK,.(J'= - Ki 

(IV. 10) 

(IV.l1) 

(IV.12) 

In accordance with the c-number theory, the parity 
operator <p acts on a ket 1 x) to produce another 1 x'), as 

I x')=<p 1 x)= -I x*( - r,t»= -0 I x( - r,t». (IV.13) 

The matrices B'i remain unchanged under parity 
operation. 

(ii) The fact that the elements of K matrices and 
B,j matrices are pure imaginary and real numbers, 
respectively, suggest to choose R to be the antilinear 
operation of complex conjugation, 

R=±O, (IV. 14) 

which satisfies Eqs. (IV.7)-(IV.9). We must, of course. 
note that <P and - 0 operations on a ket I x) are not 
equivalent operations, since the former, in addition 
to complex conjugation, replaces zc(r,t) by zc( - r,t). 

The antilinear operator 0 can be regarded as the 
"metric" of the complex space and in this sense it 
corresponds to the Lorentz metric F of Lorentz space.4 

We may now use the ordinary ket notation and define 
the scaler product of two complex vectors, without 
the necessity of introducing two types of scaler 
products, by 

(xIOlx)=x/x/, (IV. is) 

where the effect of the antilinear operator 0 is to replace 
the expression following it by its complex conjugate. 
We can also define an antilinear operator OL whose 
effect is to replace the expression preceding it by its. 
complex conjugate. Thus if b is a complex number, 
then 

and 

hence 
(IV. 16) 

4 The situation here is, in some sense, similar to the metrical 
correspondences of the two-dimensional spinor space with metric 
iU2 and four-dimensional spinor space with metric {3, to Lorentz; 
metric F. 
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26 BEHRAM KUR~UNOGLU 

The scalar product of / x) with itself with respect to 
GL is 

<X/GL/X)=XiXi. 

The vector <x / GL = <x* / = (X / is called the adjoint of 
Ix). 

(iii) The R transformation corresponding to the 
coordinate time reflecting (-F) Lorentz matrix can 
be taken as the time-reversal operator of the complex 
space. 

A general form of the time reversal operator which 
can operate on vectors of the form eio I x) is 

(IV.17) 
and it satisfies 

(IV.18) 

The operator '[' as defined by Eq. (IV.17) for 0=0, 
0=11", and 0= 211" is complex orthogonal and for 0= t1l" is 
an antiorthogonal operator; 

't'['=J for 0=0,11",211" 

't'['= -J for 0=t1l". 
(IV. 19) 

The K matrices under time-reversal operation trans­
form as 

(IV. 20) 
and 

(IV.2l) 

For 0=t1l" the parity transformation (IV.l1) and the 
time-reversal transformation (IV. 20) prove that Ki 
transform like a polar, as well as an axial, vector. The 
vector iKi behaves differently under '[' transformation, 
since 

and 
(IV.22) 

(IV.23) 

so that iKi for 0=t1l" behaves like an axial vector. 
(iv) Lorentz transformation reflecting both space and 

time coordinates is affected by - L4 and corresponding 
transformation of B matrices reduce to 

RtBp..R=Bp.., 
or 

These equations are satisfied by the successive 
application of time reversal and space-reflection 
operators. Thus the R transformation in complex space, 
corresponding to simultaneous reflection of space and 
time coordinates in Lorentz space, can be represented 
as 

R= '['(j>= e;oG(j>. (IV.2S) 

This also for 0= t1l" is an antiorthogonal transformation. 
(v) Simultaneous reflection of space, time, and field 

can be affected by the transformation operator 

(IV.26) 

V. TWO-VALUED REPRESENTATION 
OF COMPLEX GROUP 

The invariance requirement of Eq. (11.2) can be 
represented by a similarity transformation, 

F'=U-IGU, (V.l) 
where 

fX3 X-] G=i 
x+ -X3 

[ I X.
I

] 
Xa 

G'=i , 
-X3' x+ 

The factor i in the definition of G, as will be seen 
later, is needed for invariance reasons. The 2X2 com­
plex matrix U is subject to the condition 

detU= 1, (V.2) 

which provide two equations among the four complex 
elements of U. Thus U matrices can constitute a 
two-valued six parameter representation of the com­
plex orthogonal group. The determinant of Eq. (V.l) is 

(V.3) 

Furthermore, in terms of Pauli matrices, Eq. (V.l) can 
be wri tten as 

(VA) 

where the factor i on both sides of the equation, 
because of the possible antilinear U operations, cannot 
be canceled out.· 

Under a Lorentz transformation of coordinate the 
ket / X (x» will be transformed by the corresponding R 
matrix according to / x') = R / x) and correspondingly a 
two-component ket / u) of the spinor space will be 
transformed by the corresponding U matrix according 
to 

/u')=u/ U). (V.S) 

6 The two-dimensional spinor space under consideration here 
is, in some respects, quite different from the two-dimensional' 
spinor space where one considers the transformation properties 
of the vector matrix IT. = (ITi, IT. = I,). In the former space the 
condition detU = 1 is not a necessity and the U transformations 
are directly determined from R transformations. In the latter 
spinor space the transformation laws of IT. are given by 

stITI'S = L' I'IT" 

where the condition detS= 1 is a necessity and S are defined 
directly in terms of the coefficients L,a. Also well-known properties 
of IT. under improper Lorentz transformations draws a sharp line 
of demarcation between U and S transformations. The said 
reasons and others, to be discussed in later sections, will allow us 
to regard U and R transformations as charge space representations 
of Lorentz group. In particular, for quantized I x) the operators 

Ti= !J<x I K;lx)d3r 

may be related to the representation of the isotopic spin group, 
where X has an additional isotopic spin coordinate referring to 
three charge states. 
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On replacing x.' in Eq. (VA) by 

(V.6) 

and noting that Eq. (VA) must hold for all proper R 
transformations of the complex space, we obtain 

(V.7) 

as the transformation rules of U'5. The U matrix is a 
function of the coefficients Rij alone. 

It can easily be verified that the six-parameter group 
of U matrices 

U 1= ±exp[( -i!1/+!A)Ul] 

U2= ±exp[( -!icl>+!f)U2] (V.8) 

[/3= ±exp[( -i!8+!p)U3], 

together with R matrices given by Eq. (11.15) satisfy" 
Eq. (V.7). 

To find the U transformations corresponding to 
improper and antiorthogonal R transformations it is, 
because of the antilinear operations involved, necessary 
to use Eq. (VA) instead of Eq. (V.7). Since parity 
operation is not an invariant transformation in the 
two-component spinor space, we need not consider the 
case R=(J>. 

For R= C from Eq. (V.4) we obtain 

(V.9) 

which, obviously, implies an antilinear U operation. 
Let us put 

where r is a 2X2 matrix to be calculated. From Eq. 
(V.9) we can write 

iUiX/= (C)-lr-liuixirC=cr-liuiXirC 
= - (r*)-liu.;Lx*ir*. 

The special matrix j = iU2 transforms u's according to 

(V. 10) 

where UiL are left-handed Pauli matrices (which differ 
from the normal ones only in the sign of (2) andf2= -1. 
Thus we may conveniently choose r= j and obtain 

Hence the required antilinear U transformation (up to 
an arbitrary phase factor) is 

U=T=jC, (V.11) 

6 Actually if we wished we could set up the said one-two 
correspondence of Rand U transformations as one-two cor­
respondence of rotations and velocity transformations separately. 
For example, the rotation and velocity transformations of the 
complex space affected by the R matrices Ri(fJi)=exp(iIJ;Ki)i 
= 1,2,3 (not summed over i) and Ri(Pi) =exp( -PiKi) correspond 
to rotations and velocity transformations of the spinor space 
affected by the U matrices 

U i (~lii) = ±exp ( - !iliitTi) 
and 

respectively. 

where '[' satisfies 
'['2= -1. 

Transformations of iu.; and U.; under Tare 

,[,-liu i'[' = iu i, 
and 

One can also define a left operator T L by 

(V. 12) 

(V.13) 

(V. 14) 

'['L=CLj. (V.1S) 

The time-reversal operator '[' defined by Eq. (V. 11) 
for the two-dimensional spinor space is well known. 
The only result here is its correspondence to the time 
reversal operator R=C (for 5=0) of the complex space. 

VI REPRESENTATION OF PROPER 
COMPLEX GROUP 

For the sake of completeness we first give a sketch 
of the concept of infinitesimal transformation of the 
complex space. For a given generator Z(T) we can 
regard Eq. (II.12) as an equation describing time 
development of the transformation operator R from 
the identity operator 13 at an initial time TO. In this 
case Eq. (11.12) can be replaced by the integral 
equation 

R(T,TO) =I.-i iT E+(T,TI)Z(TI)R(TI,To)dT], (V1.1) 
TO 

where f+(T,TI) = 1 for T~TO and it is zero for T<TO. 
The function E+ incorporates the direction of the flow 
of time (T>TO) into the integral equation (VI.1). 

The integral equation (VI.1), from group theoretical 
point of view, is most suitable for a consistent discussion 
of infinitesimal transformations. If we assume that 
Z (T) is a continuous function of time in the interval 
(TO,T) then it is quite easy to prove, by means of the 
boundedness of the norm of Z(T), that the integral 
equation (VI.1) has a well-defined solution. A symbolic 
form of the solution is 

R(T,TO) =P exp [ -i f.:' Z(TI)dTI], (VI.2) 

where P is an operator for time labeling of the products 
of operators.7 

The result (VI.2) for complex transformation 
operators can, of course, be obtained for Lorentz 
transformation matrices also, as 

where A (Tl) is a 4X4 Hermitian and antisymmetric 
matrix. 

For a time-independent generator Z, the infinitesimal 
complex rotation operator is given by 

R=I3-iZ. (HA) 

7 F. J. Dyson, Phys. Rev. 75,486 (1949). 
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regard Eq. (II.12) as an equation describing time 
development of the transformation operator R from 
the identity operator 13 at an initial time TO. In this 
case Eq. (11.12) can be replaced by the integral 
equation 

R(T,TO) =I.-i iT E+(T,TI)Z(TI)R(TI,To)dT], (V1.1) 
TO 

where f+(T,TI) = 1 for T~TO and it is zero for T<TO. 
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where P is an operator for time labeling of the products 
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transformation matrices also, as 

where A (Tl) is a 4X4 Hermitian and antisymmetric 
matrix. 

For a time-independent generator Z, the infinitesimal 
complex rotation operator is given by 

R=I3-iZ. (HA) 

7 F. J. Dyson, Phys. Rev. 75,486 (1949). 
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Also from Eq. (VI.3) the infinitesimal Lorentz trans­
formation matrix is 

or 
(VI.S) 

where 

By using the transformation rules (IV.S), relating 
Rand L transformations, we can express the Z operator 
in terms of the infinitesimal coefficients WI" by 

(VI.6) 
where 

The total change in a ket I x) under an infinitesimal 
Lorentz transformation as a combined effect of Rand 
L transformations can be expressed as 

~ 

AI x)= ix'(x»-j x(x» = --(w·J) Ix) 
Ii 

+[ £. K+:Ei(xlPi-XiP4) Ji X), (VI.7) 

where we used the representation pp.= -ih(ajaxIJ.) and 

(VI. 8) 

is the total angular-momentum operator of the electro­
magnetic field. It satisfies the usual angular momentum 
commutation rules 

and 
(VI.9) 

(VI.lO) 

Moreover, the operator J commutes with the 
"Hamiltonian" operator 

H=cK·p, Eq. (IlLS) of the electromagnetic field, 

[Ji,H] = 0, (VLll) 

which means that if I x) is a solution of Maxwell's 
equations, then the ket 

(VI.12) 
is also a solution. 

It follows from the preceding expressions that the 
proper irreducible representations of the complex 
orthogonal group can be derived via Maxwell's equa­
tions (IlL4). All these representations can be expressed 
as vector spherical harmonics. 

Derivation of the double-valued representations, 
together with the proper representations, can proceed 
from the commutation rules (VI.lO) and (VI.9) in 
the usual way. 

VII. FOUR·DIMENSIONAL REPRESENTATION 
OF COMPLEX GROUP 

Various symmetry operations in spinor fields (time 
reversal, space inversion, charge conjugation, etc.) can 

be studied as operations induced by the complex 
representations of Lorentz group. Electromagnetic 
concept of charge can be used to describe charge 
conjugation in complex space as a special gauge 
transformation which consists of a trivial linear 
operation of multiplication of 1 X) by -1. Thus, charge 
conjugation operation in complex space belongs to the 
extended complex group and is not the same as (9'1 
operation in complex space. Charge conjugation will 
not be discussed in this paper. 

In order to bring about the main features of the 
representation, it is convenient to consider the trans­
formation properties of a spinor 1<1» defined by 

I <I»=1'!'PI' Iw), (VII.1) 

where 1<1» and Iw) are four-component spinor functions 
of space and time. We choose the representation of 
Dirac matrices where 1'i (i= 1,2,3) are Hermitian and 
1'4=i{3 is anti-Hermitian and they satisfy the anti­
commutation relations 

(VII.2) 

The four-vector PM is defined by Eq. (IlI.10), so that 
Eq. (VII.1) will be written as 

1<1»= (1j2c)(xI B I' PPlxhl'lw). (VIU) 

Under a Lorentz transformation of coordinates, 

Ix')=Llx), (VII.4) 

the spinor Iw) (and ict») and the complex vector Ix> 
are transformed according to 

W)=Slw) 

Ix')=Rlx), 

(VII.S) 

(VII.6) 

where S is the transformation operator of the four­
dimensional spinor space corresponding to R. Using 
the transformations (VII.4)-(VII.6) in Eq. (VII.3), 
we obtain (in the usual way) 

RtB!,vR1"=L1lBp,s1"S-r, (VIl.7) 

for all complex vectors Ix), spinors Iw), and unit 
vectors V!" The expressions (VII.7) for a given 
Lorentz matrix L relate R transformations of complex 
space to the S transformations of spinor space and 
they are based on the Lorentz covariance requirement 
of a particular spinor Ict» defined by Eq. (VII.3). A 
typical set of proper transformations satisfying Eq. 
(VII.7) are 

1 0 0 

:1 0 cosw simI' 
L= 

0 -sinw cosw :j 0 0 0 

R=exp[ -iwKIJ (VII.S) 

S=exp[ -!W1'21'3], 
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corresponding to rotations in Lorentz space, complex 
space, and spinor space, respectively. 

We shall be interested in the isomorphism of the 
representations of Lorentz group by L, R, and S 
matrices for various linear and antilinear symmetry 
operations. 

(i) Space inversion: The Lorentz transformation 
(of class L44~ 1) Lvka/' substituted in Eq. (VII. 7) 
yields 

RtR'Y4+ RtKiR'Yi= S'Y4S-1+ KiS'YiS-I, (VII.9) 
and 

RtK,R'Y4+ RtBijR'Yi= - KSy4S-1- BijS'YiS-I• (VILlO) 

It is easily seen from these equations that the 
operation R=(J' in complex space corresponds to the 
operation S=exp(iA)f3 in spinor space, where A is a 
constant. If llf) is regarded as a state vector, then, as 
is well known, the parity transformation for spinors is 

(J' I If(x,t)) = exp(iA)f3llf( - x,t», 

so that we must have 

exp(2iA)= 1, 

or A= 0 and A=1T. Hence S is equivalent to an operation 
by ±{3 plus reflection of space. If only R= ±C is 
{;onsidered, then the corresponding S operation is just 
±(3on !If). 

(ii) Time reversal: With the Lorentz transformation 
matrix LI'= -a/' (class L44~ -1) Eq. (VII.7) reduce 
to 

and 

RtKiR'Y4+ Rt BijR'Yi= KS'Y4S-1+ BijS'YiS-l. (VII. 11) 

Hence the antiorthogonal time-reversal operation, 
'1=e ioI/; on a ketlxl in complex space, corresponds 
to the operation S={3'Y5 plus the operation of complex 
conjugation on the spinor /If), where 

1'5=1'1"121'3"14= [0 iI
o

2]. 
iI2 

Time-reversal operation on llf), regarded as a state 
vector, is 

where '1 satisfies 

for a single spin-! particle state. 

(VILl2) 

(VILl3) 

(iii) Weak reaction8 : In this case the Lorentz trans-

8 The symmetry operation of weak reflection here is not used 
in the sense introduced by Pauli [Niels Bohr and the Development 
of Physics (Pergamon Press, New York, 1955)J who defined it 
as a combination of two symmetry operations of (i) reflection of 
space time coordinates together with transformation of every 
particle into its antiparticle (strong reflection) and (li) particle, 
antiparticle conjugation. Similar considerations by J. Schwinger 
were given in Phys. Rev. 82, 914 (1951), and also by G. Luders, 
Kg!. Danske Videnskab. Selskab, Mat.-fys. Medd. 28, No. 5 
(1954). A different approach to a complex four-dimensional 
representation of Lorentz group is given by Res. Yost, Helv. 
Phys. Acta. 30,407 (1957). 

TABLE I. 

Space Time Weak 
Lorentz group reflection reversal reflection 

Complex representation 
Two-dimensional representation 
Four-dimensional representation 

formation matrix is L/'= -ovl' (class 
and L transformations are related by 

RtB".R'Yv= - Bp.vS'Y'S -1, 
or 

RtR'Y4+RtKiR'Yi= -S1'4S-LK,s'YiS-1 

-1) and R 

(VILl4) 

(VII.1S) 
RtK;R1'4+ RtBijR'Yi= - K,s'Y4S-1- B,jS'Y1S-1. 

Weak reflection in complex space results from a 
successive application of time reversal and space­
reflection operation as 

R= 'f(J'= eioCP. 

The corresponding weak reflection operation in spinor 
space is obtained in the same way as 

(VII. 16) 

The Rand S defined in this way satisfy Eq. (VII.1S). 
The symmetry operation by '1(J' in complex space on 
I x> corresponds to the symmetry operation 

Sllf)=±1'5Cllf) (VII. 17) 

in spinor space on llf). 
(iv) Strong reflection: For the complex space the 

operation of strong reflection results from the multi­
plication by -1 (change of the sign of the field) of the 
weak re.flection operation, viz., 

R= -eio(j(J', 

which on operating on eio / Xl yields 

Reiolx(x»= Ix(-x». 

(VILl8) 

(VIL19) 

The corresponding strong reflection for spinor space 
and relevance of the complex representation to the 
discussion of spin and statistics will be made the 
subject matter of another paper. 

The results of the foregoing sections lead to the 
symmetry operations given in Table I. 

The three symmetry operations <9, eiDC, and eio(j(J' of 
the complex group together with the unit operation 13 
form a group. The product of the three operations is 
the identity element Ia of the group. 

VIII. CHARGE SPACE 

The following is a preliminary discussion of the 
possibility of relating electromagnetic concept of 
charge to the complex representation of Lorentz group. 
In particular, representation of a chargeless state by 
a complex wave function does not seem to present any 
formal or conceptual difficulties. Also a Majorana 

REPRESENTATION OF LORENTZ GROUP 29 

corresponding to rotations in Lorentz space, complex 
space, and spinor space, respectively. 

We shall be interested in the isomorphism of the 
representations of Lorentz group by L, R, and S 
matrices for various linear and antilinear symmetry 
operations. 

(i) Space inversion: The Lorentz transformation 
(of class L44~ 1) Lvka/' substituted in Eq. (VII. 7) 
yields 

RtR'Y4+ RtKiR'Yi= S'Y4S-1+ KiS'YiS-I, (VII.9) 
and 

RtK,R'Y4+ RtBijR'Yi= - KSy4S-1- BijS'YiS-I• (VILlO) 

It is easily seen from these equations that the 
operation R=(J' in complex space corresponds to the 
operation S=exp(iA)f3 in spinor space, where A is a 
constant. If llf) is regarded as a state vector, then, as 
is well known, the parity transformation for spinors is 

(J' I If(x,t)) = exp(iA)f3llf( - x,t», 

so that we must have 

exp(2iA)= 1, 

or A= 0 and A=1T. Hence S is equivalent to an operation 
by ±{3 plus reflection of space. If only R= ±C is 
{;onsidered, then the corresponding S operation is just 
±(3on !If). 

(ii) Time reversal: With the Lorentz transformation 
matrix LI'= -a/' (class L44~ -1) Eq. (VII.7) reduce 
to 

and 

RtKiR'Y4+ Rt BijR'Yi= KS'Y4S-1+ BijS'YiS-l. (VII. 11) 

Hence the antiorthogonal time-reversal operation, 
'1=e ioI/; on a ketlxl in complex space, corresponds 
to the operation S={3'Y5 plus the operation of complex 
conjugation on the spinor /If), where 

1'5=1'1"121'3"14= [0 iI
o

2]. 
iI2 

Time-reversal operation on llf), regarded as a state 
vector, is 

where '1 satisfies 

for a single spin-! particle state. 

(VILl2) 

(VILl3) 

(iii) Weak reaction8 : In this case the Lorentz trans-

8 The symmetry operation of weak reflection here is not used 
in the sense introduced by Pauli [Niels Bohr and the Development 
of Physics (Pergamon Press, New York, 1955)J who defined it 
as a combination of two symmetry operations of (i) reflection of 
space time coordinates together with transformation of every 
particle into its antiparticle (strong reflection) and (li) particle, 
antiparticle conjugation. Similar considerations by J. Schwinger 
were given in Phys. Rev. 82, 914 (1951), and also by G. Luders, 
Kg!. Danske Videnskab. Selskab, Mat.-fys. Medd. 28, No. 5 
(1954). A different approach to a complex four-dimensional 
representation of Lorentz group is given by Res. Yost, Helv. 
Phys. Acta. 30,407 (1957). 

TABLE I. 

Space Time Weak 
Lorentz group reflection reversal reflection 

Complex representation 
Two-dimensional representation 
Four-dimensional representation 

formation matrix is L/'= -ovl' (class 
and L transformations are related by 

RtB".R'Yv= - Bp.vS'Y'S -1, 
or 

RtR'Y4+RtKiR'Yi= -S1'4S-LK,s'YiS-1 

-1) and R 

(VILl4) 

(VII.1S) 
RtK;R1'4+ RtBijR'Yi= - K,s'Y4S-1- B,jS'Y1S-1. 

Weak reflection in complex space results from a 
successive application of time reversal and space­
reflection operation as 

R= 'f(J'= eioCP. 

The corresponding weak reflection operation in spinor 
space is obtained in the same way as 

(VII. 16) 

The Rand S defined in this way satisfy Eq. (VII.1S). 
The symmetry operation by '1(J' in complex space on 
I x> corresponds to the symmetry operation 

Sllf)=±1'5Cllf) (VII. 17) 

in spinor space on llf). 
(iv) Strong reflection: For the complex space the 

operation of strong reflection results from the multi­
plication by -1 (change of the sign of the field) of the 
weak re.flection operation, viz., 

R= -eio(j(J', 

which on operating on eio / Xl yields 

Reiolx(x»= Ix(-x». 

(VILl8) 

(VIL19) 

The corresponding strong reflection for spinor space 
and relevance of the complex representation to the 
discussion of spin and statistics will be made the 
subject matter of another paper. 

The results of the foregoing sections lead to the 
symmetry operations given in Table I. 

The three symmetry operations <9, eiDC, and eio(j(J' of 
the complex group together with the unit operation 13 
form a group. The product of the three operations is 
the identity element Ia of the group. 

VIII. CHARGE SPACE 

The following is a preliminary discussion of the 
possibility of relating electromagnetic concept of 
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neutrino does not fit into the scheme of complex 
representation. We shall discuss only the c-number 
theory.9 

We begin by the simple observation that the funda­
mental invariant of the complex space, 

Q2=X12+X22+X32= (xjCLjx)' 

and its complex conjugate, 

(VIII. 1) 

Q*2= XI*2+ X2*2+ X3*2= (x j C j x), (VIII.2) 

will vanish for a plane electromagnetic wave. Let us 
assume that the vanishing of Q2 corresponds to an 
invariant statement of zero charge for a massless field. 
The invariant Q*2, with respect to the point Q2=0, is 
to be regarded as the image of Q2 in a space consisting 
of three points 0, Q2, Q*2 (charge space). The complex 
invariant quantity Q is related to electric charge in 
some abstract way which will be somewhat clarified 
by considering the correspondence between photon and 
neutrino as implied by the complex group. 

The functional relationship between the points Q2 
and Q*2 is such that they are situated from the point 
Q2=0 and from one another at "invariant distances." 
The points Q2 and Q*2, being related by an antilinear 
transformation, cannot be transformed into one 
another by means of a linear unitary transformation. 
Under R transformations the "charge lattice" (0,e,Q*2) 
remains an invariant structure of the charge space. A 
more general charge space can be defined by including 
gauge group in the complex group (extended group). 

Two importan.t linear operators related to charge 
space can be obtained from adding and subtracting 
Eqs. (VIII.1) and (VIII.2), as 

and 

where 

!(Q2+Q*2)=(xj YjX)=f.l, (VIII.3) 

HQ2_Q*2) = (xjXjx)= -2iA, 

Y=HC+CL ), 

X=!(C-CL ), 

(VIllA) 

(VIII.S) 

(VIII.6) 

are linear (1) Hermitian and anti-Hermitian operators, 
respectively. The operators Y and X satisfy the 
algebraic equations 

(VIII.7) 

(VIII.8) 

Thus both Y and X have eigenvalues + 1, -1, and O. 
The effects of Y and X on a complex number bare 

and 
[Y,b]= [b*,Y], 

[X,bJ+=[b*,X]+. 

(VIII.9) 

(VIII. 10) 

• 9 For a q-number theory the field Xi must be quantized accord­
mg to 

where 
[x;*,x;] = iRF, 

and Dp is the usual propagator of electromagnetic field. 

Both Y and X belong to the complex representation 
of the complex group. 

The effect of the linear unitary operator CC L can 
be seen by writing the Hermitian scalar product of two 
complex vectors i x) and i7J) 

(VIII. 11) 

Hence we see that the action of the operator CCL 
consists of operation of complex conjugation plus 
transposi tion. 

The usual geometrical analysis for the representation 
of the proper rotations of three-dimensional Euclidean 
space about the origin of Cartesian coordinates can be 
generalized for application in complex domain where 
the coordinates are replaced by complex functions of 
space and time. We first discuss the most general form 
of stereographic projection of a unit sphere about the 
origin on to the equatorial plane Xa=O, with the south 
pole as the center of projection. To the point Xl, X2, X3 
on the sphere corresponds the point Xl" X2', 0 on the 
plane and the formulas for the projection are 

where 

XI+ix2=2a/ (1+aa*)=x+ 

xl-ix2= 2a*/ U+aa*)=x­

X3= (l-aa*)/(l+aa*), 

a= Xl' +iX2' = U2/ UI, 

and Ul, U2 are homogeneous complex coordinates which 
enables us to include the south pole of the sphere in 
the projection. In terms of the coordinates Ul and U2 
we have 

IUJI~-lu212 
Xa= 

ittd 2+l uzl 2 

Let us, now, put 

where 
detd2= - (XI2+xl+xs2) = -1. 

By using the projection formulas we can write d2 as 

where 
d2=w(ul [('!:Xu)2-iTz] I u), 

W= (IUlI2+ jU2(2)-I, 

(VIII.12) 

and T matrices are of the same type as 0' matrices and 
they commute with O"s. 

The form of Eq. (VIII.12) suggests that we can 
complete it into a vector matrix operator 

(VIII.13) 

and obtain three possible projections of the point 
(XI,X2,Xa) on the unit sphere. The matrices d1 and d 3 are 
given by 

.[X+ -X3] d1=-1, , 

Xa x_ 
X_], 
X3 
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we have 

IUJI~-lu212 
Xa= 

ittd 2+l uzl 2 

Let us, now, put 

where 
detd2= - (XI2+xl+xs2) = -1. 
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(VIII.12) 

and T matrices are of the same type as 0' matrices and 
they commute with O"s. 
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complete it into a vector matrix operator 
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(XI,X2,Xa) on the unit sphere. The matrices d1 and d 3 are 
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X3 
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and their determinants are 

detd1 = detd2= detd3= - (X12+X22+ xl). 

Thus the three possible stereographic projections 
represented by d i form a vector and they satisfy 

d12+d22+d32= X12+X22+xl= 1, 

so that the operators di lie on the unit sphere. In 
terms of (J and K matrices, Eq. (VIII. 13) can be 

we obtain 
2QU2Vl 

x+ , 
UIV1+UZV2 

2QUIV2 
x-= , (VIII.20) 

UIV1+U2V2 

UIVI-UZV2 

X3=Q , 
UIV1+UZVZ written as 

(VIII.14) which satisfy 

and 
(VIII. IS) 

where 

Hence, each unitary transformation 

lu')=Ulu), UtU=I 

on the equatorial plane, i.e., the spin or plane, cor­
responds to a rotation of the sphere. . 

It is interesting to note that the operator -i(JI'KI' is 
related to the projection operator 

where 
(VIII.16) 

The spin operators 
(VIII.17) 

commute with Pc. The operators Si can operate on the 
products of kets of a-spin and K-spin spaces. 

We may, now, generalize the results to the complex 
space. The projection of the "complex sphere" on to a 
spinor plane consists of three second rank spinors 
which together transform like a complex vector and 
each one by itself is a second rank spinor. The stereo­
graphic projections of I x) are given by 

or 

"] 
-ih -(Ja +(J2 

X'] J;2 = +(J3 -ilz -(Jl X2 , (VIII.18) 

J;a -(Jz +61 -iI2 Xa 

where the spinor indices of (J's and r's are suppressed. 
The formulas of the stereographic projections are 

2Qa 2Qb 
X+=--, X-=--, 

l+ab l+ab 

where 

l-ab 
X3=Q--, 

l+ab 
(VIII. 19) 

Note that b is not equal to the complex conjugate of a. 
On putting a=udul and b=V2/Vl in Eq. (VIII. 19), 

and 

[
-X+ xa] det =_Q2. 

Xa x-
The three stereographic projections are given by 

J;i= -i((JI'KI')ii(Vll Ti lUI), (VIII.21) 
where 

(vII =W[Vl,VZ], IUI)=Wf::l W=(UIVl+UZV2)-I. 

From Eq. (VIII.18) we have 

J;l=_i[X+ -X3], 
Xa X-

where the J; matrices satisfy 

and 

(VIII.22) 

(VIII.23) 

detJ;l= detJ;2= detJ;3= _Q2 

det(J;1+J;2) = det(J;Z+J;3) = det(J;a+J;I)= - 2Q2 

det(J;I+.i'2+J;3)= -3Q2. 

We shall regard the equatorial plane containing E 
and H of the plane electromagnetic wave as the 
"neutral plane" of the stereographic projections. On 
the latter plane we have Q2=O. In this case the three 
spinors J;i are equivalent. From Eq. (VIII.19) we can 
write 

a-1x+ + ax-= 2Q 

b-1x_+bx+=2Q, 

so that for Q= 0 we obtain 

a2b2= 1 or (ab-l)(ab+l)=O. 

The case ab -1 = 0 corresponds to the trivial state 
Xl=X2=X3=O. In case ab+l=O the quantity 

2Q/(ab+l) 

REPRESENTATION OF LORENTZ GROUP 31 

and their determinants are 

detd1 = detd2= detd3= - (X12+X22+ xl). 

Thus the three possible stereographic projections 
represented by d i form a vector and they satisfy 

d12+d22+d32= X12+X22+xl= 1, 

so that the operators di lie on the unit sphere. In 
terms of (J and K matrices, Eq. (VIII. 13) can be 

we obtain 
2QU2Vl 

x+ , 
UIV1+UZV2 

2QUIV2 
x-= , (VIII.20) 

UIV1+U2V2 

UIVI-UZV2 

X3=Q , 
UIV1+UZVZ written as 

(VIII.14) which satisfy 

and 
(VIII. IS) 

where 

Hence, each unitary transformation 

lu')=Ulu), UtU=I 

on the equatorial plane, i.e., the spin or plane, cor­
responds to a rotation of the sphere. . 

It is interesting to note that the operator -i(JI'KI' is 
related to the projection operator 

where 
(VIII.16) 

The spin operators 
(VIII.17) 

commute with Pc. The operators Si can operate on the 
products of kets of a-spin and K-spin spaces. 

We may, now, generalize the results to the complex 
space. The projection of the "complex sphere" on to a 
spinor plane consists of three second rank spinors 
which together transform like a complex vector and 
each one by itself is a second rank spinor. The stereo­
graphic projections of I x) are given by 

or 

"] 
-ih -(Ja +(J2 

X'] J;2 = +(J3 -ilz -(Jl X2 , (VIII.18) 

J;a -(Jz +61 -iI2 Xa 

where the spinor indices of (J's and r's are suppressed. 
The formulas of the stereographic projections are 

2Qa 2Qb 
X+=--, X-=--, 

l+ab l+ab 

where 

l-ab 
X3=Q--, 

l+ab 
(VIII. 19) 

Note that b is not equal to the complex conjugate of a. 
On putting a=udul and b=V2/Vl in Eq. (VIII. 19), 

and 

[
-X+ xa] det =_Q2. 

Xa x-
The three stereographic projections are given by 

J;i= -i((JI'KI')ii(Vll Ti lUI), (VIII.21) 
where 

(vII =W[Vl,VZ], IUI)=Wf::l W=(UIVl+UZV2)-I. 

From Eq. (VIII.18) we have 

J;l=_i[X+ -X3], 
Xa X-

where the J; matrices satisfy 

and 

(VIII.22) 

(VIII.23) 

detJ;l= detJ;2= detJ;3= _Q2 

det(J;1+J;2) = det(J;Z+J;3) = det(J;a+J;I)= - 2Q2 

det(J;I+.i'2+J;3)= -3Q2. 

We shall regard the equatorial plane containing E 
and H of the plane electromagnetic wave as the 
"neutral plane" of the stereographic projections. On 
the latter plane we have Q2=O. In this case the three 
spinors J;i are equivalent. From Eq. (VIII.19) we can 
write 

a-1x+ + ax-= 2Q 

b-1x_+bx+=2Q, 

so that for Q= 0 we obtain 

a2b2= 1 or (ab-l)(ab+l)=O. 

The case ab -1 = 0 corresponds to the trivial state 
Xl=X2=X3=O. In case ab+l=O the quantity 

2Q/(ab+l) 



                                                                                                                                    

32 BEHRAM KUR~UNOGLU 

must, on the basis of physics of a free electromagnetic 
field, remain finite for Q=O, (ab+1=O), since other­
wise x's would be infinite for pure electromagnetic 
wave. For simplicity we shall take 

( 
2Q ) lim -- =1 

Q-O ab+1 
(VIII. 24) 

which can be regarded as a normalization condition 
on the spinors I u) and I v). Thus on the neutral plane 
we have, from Eq. (VIII.20), the results 

X+=UZVl, X-=UIV2, X3=t(UIVI-UZV2), (VIII.2S) 

subject to the condition 

or 
Vl/U2= -V2/Ul=-q 

where q is a complex number. Hence Eqs. (VIII. 25) 
become 

and the components of the complex ket are given by 

Xl = iq(U12-U22) 

XZ= iiq(UI2-uz2) 

X3=-qU IUZ. 

(VIII. 26) 

The vanishing of Q2 is independent of a particular 
~hoice of the complex number q and, therefore, it can 
be absorbed into the spinor I u) and we can write 
Eq. (VIII.26) as 

Xl=t(U12-U22) 

1'( 2+ 2) X2="2 t· UI U2 

X3= -UjU2· 

(VIII.27) 

By using these transformations we can express the 
momentum vector pp. defined by Eq. (III.14) in terms 
of the two-components spinor I u) as 

where 

and 

PI'= (1/2c)(lf.I ul'llf.), 

Ilf.) = (cp4)i lUI, 

(VIII.28) 

Because of the assumption Q2=O, pp. is a null-vector 
and the transformation of Eq. (VIII.27) does not, of 
course, change this property of Pp.. 

If the complex ket I x) satisfies Maxwell's equations 
[Eq. (IlI.4)], then it is easy to see that Ilf.) will 
satisfy the two-component free neutrino equation 

ift(iJ/iJt) Ilf.)= H Ilf.), (VIII. 29) 
where 

H= -iftclJ·v. 

The equation V·~=O is transformed into 

(If.!f(lJ·v)llf.)=O, (VIII.30) 

which includes the polarization states of the neutrino. 
These results for one-particle theory imply that all 

three charge states satisfy the same neutrino equation 
and hence a chargeless neutrino is described by a 
complex wave function Ilf.). 

The equation for antineutrinolO can be obtained in 
the same way by considering the projection of i X*) on 
to the neutral plane Q*= 0 with the same projection 
operator. The resulting wave function because of the 
noninvariance under charge conjugationll •1Z is not the 
same as the complex conjugate of Ilf.). 

The possibility of using a complex wave function 
for the photon enables us to describe a neutrino in 
the same was as a neutral particle and also, instead of 
a Majorana neutrino, one obtains neutrino and anti­
neutrino as different particles. 

IX. CONCLUSION 

In this paper only a sketch of the complex group is 
given. We feel that a more detailed and rigorous 
discussion of the complex representation is highly 
desirable. It is hoped that this representation of the 
Lorentz group will find some applications in elementary 
particle physics. In particular, the concept of electric 
charge seems to fit in best in the complex representation 
where antilinear operations play a basic role. For 
example, the possibility of having a charge coordinate, 
in addition to spin coordinate associated with a Dirac 
wave function and hence a simultaneous description 
of three charge states of fermions in terms of 12 com­
ponent wave functions, seems to be quite feasible. 
Complex group may even enable us to obtain, in terms 
of appropriate projection operators involving 'Ys, a 
simultaneous description of mass and massless fermion 
fieldsY Furthermore, the charge and isotopic spin 
spaces may find a unified basis in the complex group. 

It has always been accepted that only real wave 
functions should be used for the description of neutral 
mesons. In the light of experimental facts and theoreti­
cal possibilities offered by the complex representation, 
one feels that the use of a real wave function (for any 
field) is not a necessity. The latter possibility for 
neutral mesons has already been discussed.14 Actually, 
the neutral state as one of the three states of charge is 
a complex component of a vector in charge space. 

Complex group seems to have more scope for a 
possibility of discovering new quantum numbers and 
abstract symmetry operations. As long as a symmetry 
operation belongs to a certain representation of Lorentz 
group, its usefulness in elementary particle physics 
increases with its abstractness and strangeness. 

10 The corresponding situation for the photon field can be 
described as a "charge conjugation" where particle and anti­
particle properties are to be attributed to two different states of 
polarization. 

11 A. Salam, Nuovo cimento 5,229 (1957). 
12 T. D. Lee and C. N. Young, Phys. Rev. 105, 1671 (1957). 
13 B. Kur!lunoglu, Nuovo cimento 15, 729 (1960). 
" J. S. Lomont and H. E. Moses, Phys. Rev. 118, 33 (1960). 
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Some mathematical questions are answered in the theory of quantized boson fields with given linear 
source distribution. It is proved that the total Hamiltonian in the Fock representation is self-adjoint. 
Unitary operators governing the evolution of the system in the interaction picture are defined, and 
conditions given for their weak and strong convergence at remote times. 

INTRODUCTION 

T HE theory of convergence to the l\l~ller wave 
matrix, and to the S matrix, for wave packet 

scattering by classical potentials, has recently been 
put on a rigorous mathematical foundation. I- 9 It may 
now be of interest to begin similar study of a second­
quantized case by discussing the simplest such, the 
solvable problem of bosons acted upon linearly by a 
given, extended, unquantized source.lO 

In theorem 1 we prove that the total Hamiltonian 
Htotal is the closure of the essentially self-adjoint sum 
Hcree+ Hinteraction of the free-field and interaction 
Hamiltonians. Since HCree is already known to be 
self-adjoint, the functional calculus for such operators 
can now be used to define U (t2/1) = exp (iHcreet2) 
Xexp[iHtotal(tl-t2) ] exp( -iHcreetl), the unitary which 
transforms the field at time tl into that at time t2, in 
the interaction picture. In theorem 2 we prove that 
the weak limit as t ~ ± 00 of U (O,t) exists and is the 
scalar multiple of a unitary operator U(O, ± 00), 
the l\l~ller wave operator, with Htota1U(0, ± 00) 
= U(O, ± 00 )Hcree. For time-dependent source, U(t2,lt) 
will also be given an explicit definition, with sufficiency 
conditions for weak and strong convergence to the S 
opera tor U ( + 00 , - 00) as t 2 ~ + 00 and tl ~ - 00 • 

Our proofs depend in an essential way on the fact 

• Work performed under the auspices of the U. S. Atomic 
Energy Commission. Presented at the 66th annual meeting of 
the American Mathematical Society, Chicago, Illinois, January 
28,1960. 
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that the external source is given, i.e., that its behavior 
has been prescribed in advance and does not depend on 
the field. Further, since the source appears linearly in 
Htotal and point sources are excluded, the model is 
"solvable," Htotal and HCree are unitarily equivalent. 
This equivalence is easy to see in the finite dimensional 
case where it is just a translation of origin to remove 
the linear term from a quadratic form. Unfortunately, 
much of the present paper must be devoted to a 
verification that this simple formal manipulation is 
actually valid in some infinite dimensional cases. 

By our three restrictions on the source (given, 
linear, extended) we have withdrawn from the funda­
mental difficulties afflicting quantum field theory. As 
partial compensation, we are able to give a mathe­
matically rigorous treatment of asymptotic properties 
of solutions of the dynamical equations, and hope 
thereby to attract into this strange field those mathe­
maticians who have enjoyed proving quite similar 
theorems in the rather dissimilar subject of classical 
differential equations. 

DEFINITIONS 

Given the Hilbert space ~ whose elements represent 
states of a single boson, we form the Fockll space 

00 

where ~(n) =~® ... ®~ is the tensor product of ~ 
with itself n times. States of the boson field are repre­
sented by elements of the subspace 

of symmetric tensors in jJ. ®o IS defined to be the 
dense linear manifold of all 

00 

such that jn¢O for only a finite number of n's. If Tis 
any transformation of ®, then To will be its restriction 
to ®o. If H is a self-adjoint transformation on ~, then 

II V. Fock, Z. Physik 75, 622 (1932). 
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mental difficulties afflicting quantum field theory. As 
partial compensation, we are able to give a mathe­
matically rigorous treatment of asymptotic properties 
of solutions of the dynamical equations, and hope 
thereby to attract into this strange field those mathe­
maticians who have enjoyed proving quite similar 
theorems in the rather dissimilar subject of classical 
differential equations. 

DEFINITIONS 

Given the Hilbert space ~ whose elements represent 
states of a single boson, we form the Fockll space 

00 

where ~(n) =~® ... ®~ is the tensor product of ~ 
with itself n times. States of the boson field are repre­
sented by elements of the subspace 

of symmetric tensors in jJ. ®o IS defined to be the 
dense linear manifold of all 

00 

such that jn¢O for only a finite number of n's. If Tis 
any transformation of ®, then To will be its restriction 
to ®o. If H is a self-adjoint transformation on ~, then 

II V. Fock, Z. Physik 75, 622 (1932). 
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dr (H) IS the closure of the densely defined linear 
transformation 

00 

L EEl (H0I(n-l)+I0H0I(n-2)+ ... +I(n-I) 0 II) 
n~ 

on 0.12 For cpE'iR, C(cp) and C*(cp) are the corresponding 
creation and annihilation operators,12 and we define 

p(cp) = i[C(cp) -C*(cp) r"'lY1, 
q(cp) = [C(cp) +C* (cp)r' /Y1, 

where [. J'" is the mapping which assigns to a closable 
operator its closure.1a 

For example, take the case of neutral scalar mesons 
of mass m"2. O. Then 'iR will be all complex-valued 
square-integrable functions on a certain measure space, 
namely, the set of all real quadruples (ko,kl,k2,ka) such 
that k0

2- k12- k22- ka2= m2, ko"2. 0 (positive-frequency 
hyperboloid in energy-momentum space), furnished 
with a measure invariant under the Lorentz group. 
0(n), the n-meson state space, can then be represented 
as all complex-valued symmetric functions of n such 
quadruples, square-integrable with respect to the 
product measure. 

The group of unitary transformations on 'iR is 
represented in those on 0 by 

00 

r:u---tr(U)=L EElU(n), 
n=O 

where Urn), the tensor product of U with itself n 
times, operates on 0(n). The differential dr of this 
representation takes infinitesimal generators of one­
parameter unitary groups on 'iR into such generators 
on 0. In particular, it takes the single-meson 
Hamiltonian H, given by 

(Hl/I) (ko,kl,k2,k3) = kol/l(ko,k l,k2,k3) 

for l/IE'iR, into the free-field Hamiltonian Hfree=dr(H). 
The letters p and q are used to express interaction 

between the field and an external system: either action 
of the field on the external system, as in measurement 
of the field value averaged over a test body represented 
by the test function cp, or action of the external system 
on the field, when to Hfree must be added an Hinteraction. 

CANONICAL ISOMORPHISM 

The dependence of 0 on m is exhibited explicitly in 
the notation 

00 

0('iR) = L EEl0(n) (m), 
n=O 

12 J. M. Cook, Trans. Am. Math. Soc. 74, 222 (1953). [We 
replace 0 and w of this reference by the more suggestive notation 
dr and C of 1. E. Segal, ibid. 81, 106 (1956).J 

13 M. H. Stone, Linear Transformations in Hilbert Space 
(American Mathematical Society, 'New York, 1932), p. 45, Th. 
2.10. 

in order to make use of a canonical isomorphism 

of Segal,I4 
By the associativity of EEl and of 0, we need only 

define ::::: for m= 2. 
Let Pi, i= 1,2, be the projection of 9RlEEl9R2 on mt, 

and Pnl,n2 the projection 

00 

o (9RlEEl9R2) = L EEl Pnl,n20(nl+n2) (9RlEEl9R2) 
nl,n2=O 

because the PiI0··· 0Pin are a set of orthogonal 
projections such that 

n 

L Pnl,n-nl = Lil," .,in=1,2PiI0·· ·0Pin 
nl=O 

on (9R1EEl9R2)(n). 
If gnl,n2EPnj,n20(nl+n2) (9R1EEl9R2), then 

IIgnl,n211 2= //Pnl,n2gnl,n2//2= Lil + ... +i,,(1Hn(2) =nl +2n2 
X IIPiI0' .. 0Pin(IHn(2)' gnl,n2W. 

The symmetry of gnl,n2 implies equality of all these 
summands, so 

and the mapping 

(nl+ n2)! 
----lIp1(nl)0P 2(n2)gnl,n2/12, 

nl!n2! 

00 00 

L EEl gnl,n2 ---t L 
nlon2=O nl,n2=O 

00 

L EEl (9R 1 (nl) 0m(2("2) 
nl.n2=O 

is an isometry. The symmetry of gnl,n2 also implies 
tha t the mapping 

of Pnl ,n20 (nl+n2) (9RlEEl9R2) into 9R1(n 1)09R2(n2) IS 

actually onto 0(n1) (9RI) 00(n2) (9R2) , so we have an 
isomorphism 

00 

0(9RlEEl9R2) ~ L EEl[0(nl)(9R1)0~(n2)(9R2)]. 
nl,n~ 

14 Les Problemes Mathematiq-ues de 10, Theorie Quo,ntiq-ue des 
Champs (Centre National de la Recherche Scientifique, Paris, 
1959), p. 69, note 3. 
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This is followed by the natural isomorphism 
00 

I: Ef)[@5(nl)(9)(I)®@5(n2J(9)(2)]<-4 
nl.n2=O 

'" '" [I: Ef)@5{m)(9)(l)]®[I: Ef)@5(n2)(9)(2)] 
nl=O "2""0 

given by the distributivity of ® with respect to Ef); 
and the definition of 3:: is complete. 

In Segal's formulation this isomorphism is expressed 
as an infinite dimensional generalization of the familiar 
relation ~2(9)(1Ef)9)(¥::~~2(9)(I)®L2(9)(2) for Hilbert 
spaces of square-integrable functions over the finite 
dimensional vector spaces 9)(1,9)(2, and IDCIEf)9)(2. 

We will use ~ to reduce assertions about @5(ffi) to 
more easily proven assertions involving subspaces of ffi. 

DIAGONALIZATION OF THE TOTAL 
HAMILTONIAN 

In theorem 1 a unitary operator will be constructed 
which transforms the total into the free-field 
Hamiltonian. The latter is self-adjoint with known 
spectrum (if true of the single-particle Hamiltonian 
from which it was constructed), so this solves the 
diagonalization problem. First st{!p in the proof is 
"completion of the square'" for single-particle 
Hamiltonians on one-dimensional spaces. 

Five preliminary lemmas must be proved which 
state, roughly: 

(1) If the HtotaI's for each of a finite number of 
different Fock spaces are self-adjoint, then so is HtotaI 
for Fock space over the direct sum ofthe corresponding 
single-particle spaces. 

(2) HtotaI is self-adjoint, if the single-particle 
Hamiltonian is bounded away from zero. 

(3) Htotal is unitarily equivalent to Hfree if it is 
approximated by operators with a similar property. 

(4) Translation of the origin of single-particle space 
causes a unitary transformation of Fock space which 
induces the expected canonical transformation of the q's. 

(5) When acted upon by such a unitary transforma­
tion, the bare source becomes "clothed," the particle 
number having a Poisson distribution. 

Lemma 1. Let [{dI'(Hi)+q(¢)}o]'" be self-adjoint 
on @5(~ni); i= 1, .. " m; ¢.E9)(i. Then 

[{ dt' (HI Ef) ... Ef)Hm)+q(¢lEf) ... Ef)¢m)} 0]"" 

is self-adjoint on @)(9)(IEf)· .. Ef)9)(m). 

Proof. 

By associativity, we may assume m=2. 
In @5(nl+n.) (9)(1 Ef)9)(z) we have 

P 1(n l )®pz{1l2)[I(k-lJ® (H1Ef)O)®I{nl+nrk)] 

=Pj(k-Il®(HIEf)O)®Pl(nl-kl®P2(n2) if l:::;k:::;n, 

CO(n l+n2) otherwise. 

So 

and, under the isomorphism 

@5(9)(1Ef)9)(2)"'@5(9)(1)®@5(9)(2) 

given on Pnl.nz@5(m+n2)(9)(1Ef)IDcz) by 

we have dI'(H1Ef)0)Z[d[ (H I )®I2]o, where the sub­
script 0 applied to an operator on @5(9)(1)®@5(9)(2) 
means its restriction to the set of all 

.. 
I: Ef)jnl,nz 

-nl.nFfi 

such that jnl.n2~0 for only a finite number of nl, 1l2; 

i.e., its restriction to [@5(9)(1)® (9)(2)],::~::~@5o(9)(IEB9)(2). 
Similarly, dI'(0Ef)H2)Z[Il®dI'(H2)].. 

The behavior of q (¢IEf) 0)0 under the canonical 
isomorphism @5 (9)(1 Ef)9)(2)~@5 (9)(1) ®@;(9)(2) is deter­
mined by that of C*(¢IEf)O), which maps 

P n l,n2@5(n 1+n2)(9)(1Ef)9)(2) 
into 

by 
gnl.n2 -+ (ltl+n2)t[ (¢1Ef)0)® ]*gnl.n2, 

where [(¢IEf)O)®]* is the bounded linear transforma­
tion uniquely defined by its action 

[(CPl Ef)0) ® J*1f.'1 ® ... ®1f.'nI +n2 

= (h (CPI EBO»1f.'2® ... ®y;nl +n2 

on decomposable tensors.IS Therefore, 

[

(1l1-1+n2)!]! 
PI (nt-1l® P 2 (n2)C*(¢IEf)O)gnl.n2 

(nl-1)!n2! 

[ 
(nl+n2)! ]! 

= PI (n 1-
l l®P2{n2l[(CPIEf)O)® J*gnt.nz 

(nl-l) !n2! 

[ 
(nl+n2)! ]1 

= [(cpIEf)O)® J* PI (nll®P2(n2lgnl,n2 
(nl-l)!n2! , 

(since Pl' ¢lEf)O=¢IEf)O) 

15 See footnote 11, p. 637; also, see footnote 12, Sec, 4, pp. 228-9. 
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The isomorphism is adjoint preserving, so C(cf>l(BO)O 
'""'[C(cf>l) 012Jo also. 

Therefore q(cf>I(BO)Z[q(cf>I) 012Jo. 
Similarly q(OEBcf>2)Z[I10q(cf>2n. 
So 

[dr(H1EBH2)+q(cf>lEBc/J2)Jo 
=dr (H lEBH2)o+q(c/Jl$c/J2)0 
= dr (HI EBO)o+q(cf>l$O)o+dr (O$H 2)0+ q(OEBcf>2)O 
"'[dr (HI) 01 2Jo+ [q(c/JI) 01 2Jo 

+ [110dr (H2) JQ+[110q(c/J2) Jo 
= ([{ar(H1)+q(c/Jl) }or-(12)o 

+ (I10 [tar (H2) + q(c/J2) } oJ'"')o. 
Let 

B;= [{dr (Hi)+q(c/Ji) lor"~. 

By hypothesis, Bi is a self-adjoint operator on 16C9Jli). 
We must show that the closure of (B i012).+ (110Bz)o 
exists and is self-adjoint. 

Existence of the closure follows from the fact that 
(Bi012)o+ (110B2)o is symmetric, i.e., is contained in 
its adjoint, a closed operator. To prove the closure 
self-adjoint, we first show 

[(B1012)0+ (110B2)oJ""':::> (B I012+ 110B2)~. 

Let j£'1)B;. By hypothesis, there exist /i,,,E16(9Jli)O 
such that j"n ----> ji and B,fi,n ----> B,fi, i.e., such that 
/t,n0/2.n ----> /to/2 and 

[(B1012)o+ (I10B 2)0](jl,n0jl,n) ----> (B 1jl)0/i 
+/to(Bd2). 

Therefore/t0/2E'1)[(B10I2)0+ (I10Bz)o]'" and 

[(BI012)0+ (1 10B2).]'" (j10/2) 
= (BJ/l)0/2+/t0 (B2f2)' 

Now let Bi=fAdE;,A, and 

gAE[(E1,A- E1,_A) 0 (E2,A- E t ,-A)J@5(9Jll)0e(9Jl2)' 

If 

is a complete orthonormal set in (Ei,A - E i ,-A)@5(9Jt), 
then 

n 

gA,n= L (gA,gl,kI0g2,k2)gl,kI0g2,k2~gA as n----> 00, 
kl,k2=1 

and [since gi,kE'1)B; and B 1012+110B2 is bounded 
on (E1.A- E1._A)0 (E2,A- E2,-A) 'e(9Jll)®e(9Jl2)J we 
have 

[(BI®12)o+ (110B2)oJ"'gA.n 
= (B 1012+I1®B2)gA.n----> (B I012+I10B2)gA. 

In other words, gAE'1)[(BI®12)o+(I1®B2)oJ"" and 

[(Bl®12)o+ (It®B2)o]''''''gA = (B I®12+ I 1®B2)gA. 

Finally, let gE'1)[BI®12+lt®B2]'" and 

gA= (EI ,A-E1._A)0 (E2,A- E2,_A)g. 

Then, by the preceding paragraph, 

gAE'1)[ (B101 2)0+ (I10B2)O]~ 
and 

El,A10E2,A2 is a two-parameter spectral decomposi­
tion,16 so [B1012+ 11®BzJ~ is self-adjoint. Further, 
gA ----> g and 

(B10Iz+II0B2)gA ----> [Bl®12+lt®B2J"g. 

Therefore gE'1)[(B1012)0+(110B2)0]'" and 

[(B I012)o+ (I1®B2)0]"'g= [B1®ll+11®B2JVg; 

in other words, 

[(B10 12)0+ (110B2)oJ"':;;:2[B101z+ 110B2T'-· 
But [B1012+I10B2J'" is maximal (since self­

adjoint)17 so 

[(B I®12)0+ (II ®B2)oJ""= [Bl®12+ 11®B2J'"'. 

Corollary. 

[{ dr (HI EBH2)+q(cf>I EBcf>2) } 0]'" 
.:::[[{ (ar(HI)+q(c/Jl) } oJ""® 12 

+ I 10 [{ar (HZ)+q(c/J2) } or]'" 

if [{dI'(H1EtlH2)+q(cf>1$cf>2)}O]"" is self-adjoint. 

Proof. 

Cdr (H I (B H 2)+q(c/Jl$c/J2) Jo 
= dr (HI $0)0+ q(cf>l $ 0)0+ dr (OEB H 2)o+q(0$c/J2)Q 
.:::[ar (HI) 012]0+ [q(c/JI) ®Iz]o 

+ [110dI'(H2) Jo+ [ll®q(cf>2)]0 
= {Cdr (H1)+q(c/JI) ]012}0+ {II0 [ar (H2)+q(c/Jz) J}o 

as before. 
Therefore, 

[{ ar (HI EBH2)+q(c/Jl$c/J2) }oJ"" 
.:::[ {[ar (HI) +q(c/JI) J®1 2}0 

+ {I 10 Cdr (Hz) +q(cf>2) J}oJ''''C[{ Cdr (H I) 
+q(cf>l) Jo®12+ 110 Cdr (HZ)+q(c/J2)]}oJ"" 
C[[{ dr(H1)+q(c/Jl) } o]""® 12 

+11®[{dI' (H2)+q(c/J2)}oJ'] ....... 

But [{dr(H1EBH2)+q(cf>IEBcf>2)}oJ'" is maximal be­
cause self-adjoint by hypothesis. 

16 B. V. Nagy, Spektraldarstellung Linearer Transformationen 
des H-ilbertschen Raumes (Springer-Verlag, Berlin, 1942), p. 46. 

17 See footnote 16, Chap. V, Sec. 4, p. 33; or footnote 13, p. 50, 
Th.2.13. 
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So 
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"'[dr (HI) 01 2Jo+ [q(c/JI) 01 2Jo 

+ [110dr (H2) JQ+[110q(c/J2) Jo 
= ([{ar(H1)+q(c/Jl) }or-(12)o 

+ (I10 [tar (H2) + q(c/J2) } oJ'"')o. 
Let 

B;= [{dr (Hi)+q(c/Ji) lor"~. 

By hypothesis, Bi is a self-adjoint operator on 16C9Jli). 
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exists and is self-adjoint. 

Existence of the closure follows from the fact that 
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+/to(Bd2). 
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gAE[(E1,A- E1,_A) 0 (E2,A- E t ,-A)J@5(9Jll)0e(9Jl2)' 

If 

is a complete orthonormal set in (Ei,A - E i ,-A)@5(9Jt), 
then 

n 

gA,n= L (gA,gl,kI0g2,k2)gl,kI0g2,k2~gA as n----> 00, 
kl,k2=1 
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adjoint)17 so 
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Corollary. 

[{ dr (HI EBH2)+q(cf>I EBcf>2) } 0]'" 
.:::[[{ (ar(HI)+q(c/Jl) } oJ""® 12 

+ I 10 [{ar (HZ)+q(c/J2) } or]'" 

if [{dI'(H1EtlH2)+q(cf>1$cf>2)}O]"" is self-adjoint. 

Proof. 
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Therefore, 

[{ ar (HI EBH2)+q(c/Jl$c/J2) }oJ"" 
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C[[{ dr(H1)+q(c/Jl) } o]""® 12 

+11®[{dI' (H2)+q(c/J2)}oJ'] ....... 

But [{dr(H1EBH2)+q(cf>IEBcf>2)}oJ'" is maximal be­
cause self-adjoint by hypothesis. 

16 B. V. Nagy, Spektraldarstellung Linearer Transformationen 
des H-ilbertschen Raumes (Springer-Verlag, Berlin, 1942), p. 46. 

17 See footnote 16, Chap. V, Sec. 4, p. 33; or footnote 13, p. 50, 
Th.2.13. 
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Lemma 2. If H is self-adjoint and ~ I, then 

is also self-adjoint. 

Proof. 

First we assume H~311¢I/I. 
To prove [dr(H)+C(¢)+C*(¢)]o essentially self­

adjoint under these conditions, we need prove that its 
deficiency indices are zero, i.e., that if 

is orthogonal to 

Cdr (H)+C(¢)+C*(¢)±iI]:Ddr (H)+C(¢)+C*(¢), 

then g=O.lS So, let 

0= (g, [dr(H)+C(¢)+C*(¢)±iI]jn) 

for jnE:Ddr(H)n®(n). Then 

0= (gn-lEBgnEBgn+l, [dr(H)+C(¢)+C*(¢)±iI]jn) 
= (gn, [dr(H)±iI]jn)+ (C(¢)gn-I+C*(¢)gn+l,jn). 

Therefore gnE:D[dr(H)±iI]* and, since the self­
adjointness of dr (H) implies 

[dr (H)±iI]*= dr (H) =FiI, 
we have 

[dI'(H)=FiI]gn= -C(¢)gn-I-C*(¢)gn+1 

if n= 1, 2, ... ; =Figo= - (gl,¢). Therefore 

II[dI' (H)=FiI]gnll ~ IIC(¢)gn-lll+ IIC*(¢)gn+1l/, 

II¢II ~O. Then 3nllgnll ~ nlllgn_dl + (n+ 1)!llgn+lll, i.e., 
(n+ 1)lllgn+111 ~3nllgnl/ -n'llgn-111 for n= 1,2, .. '. 

By the real homogeneity of dr, C, and C*, we 
may assume I/¢I/ = 1. Then Ilgoll ~ Ilgll/ 'I/¢II implies 
Ilglll ~ IIgoll· 

If n~ 1, then Ilgn+111 ~ (3n '1Ignll- nlllgn_IID (n+ 1)-t 
and (3n- nt)(n+ 1)-!~ 1, so Ilgnll ~ Ilgn-11/ implies 

Ilgn+111 ~ (3n- nt) (n+ 1)-i llgn ll ~ Ilgnl/. 

We already know I/gii/ ~ Ilgoi/, so by induction we 
conclude Ilgoll ~ I/gIl1 ~ IIg211 ~ IIg31/ ~ ... etc. Therefore 

"" L: IIgnW= IlgW< 00 
n~ 

only when g=O, both defect indices of [dr(H)+C(¢) 
+C*(¢)]o are zero, and the operator is essentially 
self-adjoint. 

Now we want to remove the restriction H~311¢III 
on II¢II, so let H~I, and II¢II arbitrary. 

Pick the integer m so large that 3m-i ll¢11 < 1, and let 
mm be the m-dimensional complex Hilbert space of all 
m tuples (Xl,' .. ,xm). Now, instead of H on m, consider 
H®I on m®mm; and instead of ¢Em, consider 
¢®vEm®mm, where v=m-l(1,1,.· ·,1)Emm. Then 
m®mm=illCIEB···EBillCm, where 9Jt=m®(Oli,···,Omi); 
and ¢®V=¢IEB" ·EB¢m with ¢i=m-t¢®(oli," ',omi ) 

EillC i . The illCi decompose H®I into H®I=H1EB··· 
EBHm. Since Hi~Ii>3m-!II¢II' I i=311¢ill' Ii in eachillC;,. 
the first part of the proof of this lemma shows that 
[{dr (Hi)+C(¢i)+C*(¢i) } 0]'" is self-adjoint on ®(illCi) ;. 
and so, by lemma 1, and the real homogeneity of dr. 
C, and C*, we can assert that 

and 
n= 1,2, ... [{dr(H®I)+q(¢®v)}o]'" 

Ilgoi/ ~ IIgIII·II¢I/. is self-adjoint on ®(m®mm). 
But Now decompose mm differently: mm={V}EB{v}l. By 

II[dr(H)=FiI]gnl/~lldr(H)gnll. the corollary to lemma 1, 

Further, H~311¢III implies dr(H)~311¢l/dr(I),19 so 

IldI'(H)gnll~31/¢1I'lIdr(I)gnll =3nll¢II·lIgnll· 
So 

and 

3nll¢II'llgnll ~ IIC(¢)gn-lll+ IiC*(¢)gn+lll, n= 1,2, .. '. 

From the polar decomposition of C(¢) and C*(¢), it 
can be seen20 that 

and 

If ¢=O, the lemma is obvious,21 so we can assume 

18 See footnote 16, p. 38; or footnote 13, p. 339. 
19 Footnote 12, p. 224, Cor. 2. 
20 Footnote 12, p. 229. 
21 Footnote 12, p. 223, Th. 1. 

[{dr(H®I)+q(¢®v) }o]'" 

~[[{dr(H®p{v))+q(¢®v) }0]"'®I" 

+ I'® [{ dr (H®P{v)l)+q(O) }o]"'J''', 

where I' is the identity on ®(m®{v}) and Iff that on 
®(m®{v}l). 

Therefore 

[[{ dr (H®P{vl) +q(¢®v}o]"'®I" 

+I'® [{dr(H®P{vI1)+q(0) }o]'"'J''', 
in other words, 

[[{ dr (H®P{v))+q(¢®v) } 0]'" ® I" 

+I'®dr(H®P{vI 1
)}", 

is self-adjoint on ®(m®{v})®®(m®{v}l). 
It commutes with I'®exp[itdr(I®P{vI 1

)] because 
the latter, as an isomorphism, commutes with the 
invariantly defined operation (')'" and then with the 
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18 See footnote 16, p. 38; or footnote 13, p. 339. 
19 Footnote 12, p. 224, Cor. 2. 
20 Footnote 12, p. 229. 
21 Footnote 12, p. 223, Th. 1. 
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two summands. The first because 

l' ®exp[itdr (I®Plvl l) J 
is an identity on 0(ffi®{v}), and the second because 

exp[itdr(I®P(vll)J dr(H®P(vl l) 
Xexp[ -itdr(I®P(vll)J 

=dr[exp(itI®P(v)l)' H®P(vl l ' exp( - itI®P(v)l) J22 
=dr{[exp(it)· H" exp( -it)J®P(v)l} 

(by the idempotence of plv)l) 
=dr(H®P(V)l). 

Since the self-adjoint operator 

[[{ dr (H®P(v))+q(cp®v) }oJ"®I" 
+I'®dr(H®P(v)l)J'" 

commutes with every element of the one-parameter 
group l'®exp[itdr(I®PIv)")J, it must commute with 
the projections in the spectral decomposition of the 
infinitesimal generator l'®dr(I®P(vl l).23 

Zero is an eigenvalue in the point spectrum of 
dr(I®Plvl l ), with the corresponding eigenspace 
0(0) (ffi®{vP) ; so 

[[{ dr (H®P(vl)+q(CP®v) } oJ"'® I" 
+ I'®dr(H®P(v)l)J'" 

is reduced by, and is self-adjoint in, the subspace 
0(ffi® {v})®0(0)(ffi® {V}l). But here l'®dI' (H®P(v)l) 
is zero, so we have shown that 

[[{ dr (H®PIv))+q(CP®v) }oJ"'®I"J'" 

is self-adjoint on 0(ffi® {v}) ®0(0) (ffi® {V}l). Further, 
since 0(0) (ffi® {V}l) is one-dimensional, we have also 
shown that [{dr(H®P(,.I)+q(CP®v)}oJ'" is self-adjoint 
on 0(ffi®{v}). 

Finally, since {v} is one-dimensional, ffi®{v} IS 

isomorphic to ffi in such a way that 

H®PL,)~H, cp®v~cp, 0(ffi®{v})~0(ffi), 

and 

Lemma 3. Let Hk be a sequence of commuting, 
nonnegative self-adjoint operators such that cpE1)Hk 
and 

If H is a self-adjoint operator, commuting with all H k , 

such that 

cpE1)H, [dr(H)+q(Hcp)+t(Hcp,cp)]o 

is essentially self-adjoint, and HktH strongly on 1)H; 
then 

[dr (H) + q(Hcp) +t (Hcp,cp) J'" =eip(4))dr (H)e- ip (4». 

~ Footnote 12, p. 225, Th. 3. 
23 Footnote 16, p. 69. 

Proof. 

HktH strongly on 1)H implies dr(Hk)tdr(H) 
strongly on 1)dr (H). Therefore, 

[dI' (Hk ) +q(Hk¢ )+t (HkCP,cp) J'" teip (4))dr (H)e- ip (4» 

strongly on 1)eip (4))dr (H)e- ip (4». 
Let 

fE1)[dI' (H)+q(Hcp)+ (Hcp,cpHJo. 

ThenfE1)dI' (Hk) n1)q (HkCP) for all k [since 05:Hk5:H 
implies 05:dr(Hk)5:dr(H) and, therefore, 1)dI'(Hk) 
~1)dr(H); also 0oC1)q(HkCP)J, and 

Cdr (H) + q(Hcp) + t(Hcp,cp) Jf 

Since 

-[dI'(Hk)+q(HkCP)+t(Hk¢,CP)Jf 
=dr(H-Hk)f+q[(H-Hk)cp]f 

+t( (H - Hk)cp, cp)f ---+ 0 as k ---+ 00. 

fE1)eip(4))dr(Hk)e-ip(4>){ =1)[dl' (Hk) +q(HkCP) 

+ (HA>,cpH]'" by hypothesis} 

and limk __ eip(4))dr(Hk)e-ip(4>)f exists (by the previous 
sentence), we must have fE1)e ip (4))' dr(H)e-ip (4» and 

limk .... '" eip (4))dr (Hk )e-ip (4»f = eip (4))dI' (H)e- ip (4»f 

[by Lebesgue's bounded convergence theorem applied 
to the monotone increasing sequence of integrands 
in the simultaneous spectral decompositions of all 
eip (4))dr (Hk )e-ip (4» and eip (4))dr (H)e- ip (4»]. The limit 
has already been shown to equal [dr(H)+q(Hcp) 
+t(Hcp,cp)Jof, so we conclude 

eip (4))dr (H)e- ip (4»-;;2[dr (H)+q(Hcp)+t (Hcp,cp)Jo. 

Therefore, 

eip(4))dr(H)e-ip(4>)-;;2[{dr(H)+q(Hcp)+t(Hcp,cp)}oJ~. 

But [{dr(H)+q(Hcp)+t(Hcp,cp)}oJ'" is self-adjoint by 
hypothesis, and, therefore, maximal, so 

eip(4))dr(H)e- ip (4>) = [{dl' (H) +q(Hcp) +t(Hcp,cp) }oJ"'. 

Further, 

dr(H)+q(Hcp)+t(Hcp,cp) 
-;;2[dr(H)+q(Hcp)+t(Hcp,cp)Jo 

implies 

[dr (H)+q(Hcp)+t (Hcp,cp)]'" 
::J[{dr(H)+q(Hcp)+t(Hcp,cp)}o]~ 

[existence of the closure of dr(H)+q(Hcp)+t(Hcp,cp) 
is guaranteed by its symmetricity24J, and again the 
maximality of [{dr(H)+q(Hcp)+t(Hcp,cp)}oJ~ implies 

[dr(H)+q(Hcp)+t(Hcp,cp)]~ 

= [{dr(H)+q(Hcp)+t(Hcp,cp)}oJ~. 

24 Footnote 16, p. 34. 
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+t( (H - Hk)cp, cp)f ---+ 0 as k ---+ 00. 

fE1)eip(4))dr(Hk)e-ip(4>){ =1)[dl' (Hk) +q(HkCP) 

+ (HA>,cpH]'" by hypothesis} 

and limk __ eip(4))dr(Hk)e-ip(4>)f exists (by the previous 
sentence), we must have fE1)e ip (4))' dr(H)e-ip (4» and 
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Therefore, 

eip(4))dr(H)e-ip(4>)-;;2[{dr(H)+q(Hcp)+t(Hcp,cp)}oJ~. 

But [{dr(H)+q(Hcp)+t(Hcp,cp)}oJ'" is self-adjoint by 
hypothesis, and, therefore, maximal, so 

eip(4))dr(H)e- ip (4>) = [{dl' (H) +q(Hcp) +t(Hcp,cp) }oJ"'. 

Further, 

dr(H)+q(Hcp)+t(Hcp,cp) 
-;;2[dr(H)+q(Hcp)+t(Hcp,cp)Jo 

implies 

[dr (H)+q(Hcp)+t (Hcp,cp)]'" 
::J[{dr(H)+q(Hcp)+t(Hcp,cp)}o]~ 

[existence of the closure of dr(H)+q(Hcp)+t(Hcp,cp) 
is guaranteed by its symmetricity24J, and again the 
maximality of [{dr(H)+q(Hcp)+t(Hcp,cp)}oJ~ implies 

[dr(H)+q(Hcp)+t(Hcp,cp)]~ 

= [{dr(H)+q(Hcp)+t(Hcp,cp)}oJ~. 

24 Footnote 16, p. 34. 
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Prooj. 

Let jE10o. Then, since [q(c/>I),p(c/>)J"=i Re(c/>,c/>I),25 

[q (c/>I)ip (c/> ) + Re (c/>,c/> I) Jj = ip(c/> )q(c/>I)j. 

By induction (possible because all operators involved 
carry~o into itself) 

[ip(c/» Jnq(c/>I)j= q(c/>l) [ip (c/» Jnj+n[ip(c/» In-I Re(c/>,c/>N, 

and, therefore, 

m [ip(c/»Jn m [ip(c/»Jn m-I [ip(c/»Jn 
L q(c/>I)j=q(c/>l) L j+ L --
n~O nl n~O nl n~O nl 

As m ---> 00, the series 

'" [ip(c/»Jn 00 [ip(c/»Jn 
L f and L q(c/>I)j 
,,~n! n~O nl 

converge absolutely. [If g is in the subspace corre­
sponding to 

I 

L EB10(k), 
k~O 

then ip(c/»g is in that corresponding to 

and 

1+1 
L EB@3(k), 
k~O 

//ip(c/»g// ~ //c/>//Y2 (l+ l)!//g// 

by the polar decompositions26 of C(c/» and C*(c/». Now 
apply the ratio test.J 

Since q(c/>I) is closed, this means that 

and 

oc [ip(c/»Jn 00 [ip(c/»Jn <fJ [ip(c/>)]" 
L q(c/>I)j=q(c/>I) L f+ L --
n~O nl n~() nl n~O nl 

Further, whenever 
00 [ip(c/»Jn 
L g 
n~() nl 

converges strongly, it must equal eip(cf»g. [Let pCc/»~ 
=I'AdE)... Then 

00 [ip(</»Jn 00 [ip(</»Jn 
(EA-E_A) L g= L (EA-E_A) g 

n~O nl n~O n! 

with [ip(</»Jn/n!, and pCc/»~ is bounded on (EA- K A)10, 
so 

converges uniformly to 

eip(cf»(EA-E_A) = (EA-E_A)eip(cf». 

Therefore 
00 [ip(c/»Jn 

(EA-E_A) L g= (EA-E_A)eip(cf»g 
n~O n! 

for all A. But EA- E_A ---> I as A ---> oo.J Therefore 

eip(cf»q(c/>I)j = q(c/>I)eip(cf»j+eip(cf» Re(c/>,</>I)f. 

Therefore 

and 
[eip(cf»q(c/>I) Jo= {[q(</>I)+ Re(</>,</>I) Jeip(cf» }o, 

[eip(cf»q(</>I) Jo~ [q(c/>I) + Re (</>,</>1) Jeip(cf». 
But 

[{ eip(cf»q(</>I) }oJ~ = eip(cf>>[q(c/>I)oJ'" = eip(cf»q(</>I) ,27 

and [q(</>I)+Re(c/>,</>I)Jeip(cf» is already closed, so 

eip(cf»q(</>I)~[q(</>l)+ Re(</>,</>I) Jeip(cf», 

in other words, 

eip(cf»q(</>I)e-;p(cf»Cq(</>I) + Re(</>,</>l). 

Since both sides are self-adjoint they must be equal. 

Corollary.28 eip(cf»C (</>l)e-;P(cf» =C(c/>l)+ (</>1,</»/Y2, and 

eip(cf»C*(</>I)e-ip(cf» = C*(</>l) + (</>,c/>1)/Y2. 

Proof. 

C(</>l) = [q(</>I)-ip(</>l) J'" /Y2 = [q(c/>I) -iq(i</>l) J'" /Y2, 

so 

eip(cf»C(</>I)e-ip(cf» 

= [q (c/>1) + Re(c/>,c/>l) -iq(i4>l) -i Re(</>,ic/>l) J'" /Y2 
= C(</>l) + [Re(c/>,</>l)+i Rei (</>,</>1) J/Y2 
=C(</>l)+[Re(c/>I,</»+i 1m (</>I,</»J/Y2. 

Lemma 5. 
'" e-ip (cf»</> (0) = e-(cf>·cf»/4 L c/>(n) / (2nnl)!. 

Proof. 

Let 

i=l 

n=O 

because EA- E_A is bounded. Also, EA- E_A commutes 27 [q(q,I)oJ~=q(cf>I) by the proof of Th. 10 on p. 231 offootnote 
12. 

2. Footnote 12, p. 232, Th. 11. 28 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 2, 6 (1947); 
26 Footnote 12, p. 229. especially p. 10, Eq. (3.8). 
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be an orthonormal basis of 1R such that i> 1 implies 
1>;.11>. 

The set of all C(1)il)'' 'C(1)in )1>(O) is an orthogonal 
basis of ®.29 

If ik> 1 for some k, then 

(e- ip (</»1>(O), C(1)il)' .. C(1)in)1> (0» 

= (e-ip(</»C*(cpik)CP(O), C(CPil)· .. C(CPik_l) 
XC(CPik+l)' .. C(cpin)CP(O» 

because the C(cpij) commute on ®0,30 and C*(cpik) com­
mutes with c ip (</» by the corollary to lemma 4. But 
C* (CPik)CP (0) = 0.29 Therefore 

(e-ip (</>lcp (0) , C(CPil)' . ·C(cpi,,)cp(O» =0 

when it is not the case that all 1. Therefore 

'" e-ip (</»cP (0) = I: Cl!"C(cpl)ncp{O), 
n=O 

where 
O:n= (e-ip(</»cp(0l, C(cpl)ncp(O»llc(cpl)ncp\Olll-2. 

But 

(e-ip{</>lcp(Ol, C(cpJ)ncp(O» 
= (cp(O), eip(</>lC(CPl)ncp(Ol) 

= (e-iP(</>l[ (cp,cp 1)/V1] ncp (0) ,cp(O» 

By linearitiH we have (CP,CPI)C(CPI) = C[ (CP,CPl)CPI]; 
als029 we have IIC(cpI)"cp(0)112=nl, so 

'" C[ (CP,CPJ)CPI]ncp(Ol 
e-ip(</>lcp(Ol = (e-ip (</>lcp (0) ,cp(O» I: -"'----

,,=0 v2"nl 

Now define 
u( r) = (e-iTP(¢lcp(Ol,cp(Ol). 

u is differentiable32 since cp(OlE'1)P(cp), and 

u'(r) = - (e-iTP(</>lip(cp)cp(Ol,cp(Ol) 
= (e-iTP (</>lC(cp)cp(°l,cp(O»/v'2 

= ([C(cp)- (cp,Tcp)/V1]e-iTP (</>lcp(O\cp(Ol)/V1 

29 Footnote 12, p. 228, Lemma 2. 
ao Footnote 12, p. 230, Th. 8. 
31 Footnote 12, Sec. 2, p. 225. 
a2 M. H. Stone, Ann. Math. 33, 647 (1932), Th. D. 

by the corollary to lemma 4. So 

u'(r)= [e-iTp (</»cp (Ol,C* (cp)cp (01]/V1 
- r(cp,cpH (e-iTP('f»cp(O),cp(O»; 

i.e., since the first summand is zero, we have shown 
u'(r) -r(1),1>)tu(r), with the boundary condition 
u(O) (cp(Ol ,cp(O» = 1. Therefore u( r) c(q"q,) T"" and 
(e-ip(q,)cp(O) ,cp(O» = u(l) = c(</>,q,) /4. 

Corollary 1. (e-ip(</»cp(Ol ,cp(O» = e-(q"q,1/4 

Corollary 2. eiP (</>l®oC'1)dr(l). 

Proof. 

Let 1R=IDe</>®IDe/, where IDeq, is the one-dimensional 
subspace spanned by cp (which we may assume +0). 
Then, under the canonical isomorphism 

®(1R)"'®(IDeq,)®®(IDe</>l), 
we have 

®(1R)o~[®(IDe</»®®(sml)]oC®(sm</»o®e(sm/), 

and 

dr(l)~[dr(pq,)®I2+II®dr(p q, 1) J""' 
(by the corollary to lemma 1) 

:Jdr(p </»®I2+I1®dr(p /). 

Therefore, we may assume 1R one-dimensional 
(i.e., =IDeq,). 

Since ®(1R)o now consists of linear combinations 
Cl!ocp(O) + ... +Cl!mcp(m), it will be sufficient to prove 
eip(q,)cp(n)E'1)dr(I). 

But cp(nl=n!-lC(cp)ncp(Ol, so 

eip(q,lcp(nl = nl-![C(cp)+ (cp,cp)/V1]ne iP (q,lcp(O) 

by the corollary to lemma 4, and it remains only to 
show C(cp)(n)eip (</>lcp(OlE'1)dr(I), i.e., 

t/1iCn+k) e-(M)14C(q,)"( _cp)<kl/l
iZ 

k=O (2kk 1)t I 
'" (n+k)2 (k+n)! 

=e-(</>,</»/2 I: --- -_-lIcpW(n+k) < 00. 

k=O 2kk! k! 

Convergence here is assured by the ratio test. 

Theorem 1.33 If H is self-adjoint and cpE'1)H, then 

[dr (H) + q(Hcp) +HHcp,cp ]'" = eiP(</>ldr(H)e-ip(<I». 

Proof· 

If H is the projection of 1R onto the one-dimensional 
subspace spanned by the normalized vector q,l, then 

33The formula Htot.e.I=UHcr .. U-1 is due to C. Mj'lller, Kg!. 
Danske Videnskab. Selskab, Mat.-fys. Medd. 23, No, 1, 1 (1945), 
Eq. (65). For the special form it takes in theorem 1, see p. 46 of 
G. WentzePG; also Eq. (14.21), p. 82 of K. 0, Friedrichs!O; or 
Eq. (7.40), p. 126 of J. M. Jauch and F. Rohrlich.'o 

40 ]. M. COOK 

be an orthonormal basis of 1R such that i> 1 implies 
1>;.11>. 

The set of all C(1)il)'' 'C(1)in )1>(O) is an orthogonal 
basis of ®.29 

If ik> 1 for some k, then 

(e- ip (</»1>(O), C(1)il)' .. C(1)in)1> (0» 

= (e-ip(</»C*(cpik)CP(O), C(CPil)· .. C(CPik_l) 
XC(CPik+l)' .. C(cpin)CP(O» 

because the C(cpij) commute on ®0,30 and C*(cpik) com­
mutes with c ip (</» by the corollary to lemma 4. But 
C* (CPik)CP (0) = 0.29 Therefore 

(e-ip (</>lcp (0) , C(CPil)' . ·C(cpi,,)cp(O» =0 

when it is not the case that all 1. Therefore 

'" e-ip (</»cP (0) = I: Cl!"C(cpl)ncp{O), 
n=O 

where 
O:n= (e-ip(</»cp(0l, C(cpl)ncp(O»llc(cpl)ncp\Olll-2. 

But 

(e-ip{</>lcp(Ol, C(cpJ)ncp(O» 
= (cp(O), eip(</>lC(CPl)ncp(Ol) 

= (e-iP(</>l[ (cp,cp 1)/V1] ncp (0) ,cp(O» 

By linearitiH we have (CP,CPI)C(CPI) = C[ (CP,CPl)CPI]; 
als029 we have IIC(cpI)"cp(0)112=nl, so 

'" C[ (CP,CPJ)CPI]ncp(Ol 
e-ip(</>lcp(Ol = (e-ip (</>lcp (0) ,cp(O» I: -"'----

,,=0 v2"nl 

Now define 
u( r) = (e-iTP(¢lcp(Ol,cp(Ol). 

u is differentiable32 since cp(OlE'1)P(cp), and 

u'(r) = - (e-iTP(</>lip(cp)cp(Ol,cp(Ol) 
= (e-iTP (</>lC(cp)cp(°l,cp(O»/v'2 

= ([C(cp)- (cp,Tcp)/V1]e-iTP (</>lcp(O\cp(Ol)/V1 

29 Footnote 12, p. 228, Lemma 2. 
ao Footnote 12, p. 230, Th. 8. 
31 Footnote 12, Sec. 2, p. 225. 
a2 M. H. Stone, Ann. Math. 33, 647 (1932), Th. D. 

by the corollary to lemma 4. So 

u'(r)= [e-iTp (</»cp (Ol,C* (cp)cp (01]/V1 
- r(cp,cpH (e-iTP('f»cp(O),cp(O»; 

i.e., since the first summand is zero, we have shown 
u'(r) -r(1),1>)tu(r), with the boundary condition 
u(O) (cp(Ol ,cp(O» = 1. Therefore u( r) c(q"q,) T"" and 
(e-ip(q,)cp(O) ,cp(O» = u(l) = c(</>,q,) /4. 

Corollary 1. (e-ip(</»cp(Ol ,cp(O» = e-(q"q,1/4 

Corollary 2. eiP (</>l®oC'1)dr(l). 

Proof. 

Let 1R=IDe</>®IDe/, where IDeq, is the one-dimensional 
subspace spanned by cp (which we may assume +0). 
Then, under the canonical isomorphism 

®(1R)"'®(IDeq,)®®(IDe</>l), 
we have 

®(1R)o~[®(IDe</»®®(sml)]oC®(sm</»o®e(sm/), 

and 

dr(l)~[dr(pq,)®I2+II®dr(p q, 1) J""' 
(by the corollary to lemma 1) 

:Jdr(p </»®I2+I1®dr(p /). 

Therefore, we may assume 1R one-dimensional 
(i.e., =IDeq,). 

Since ®(1R)o now consists of linear combinations 
Cl!ocp(O) + ... +Cl!mcp(m), it will be sufficient to prove 
eip(q,)cp(n)E'1)dr(I). 

But cp(nl=n!-lC(cp)ncp(Ol, so 

eip(q,lcp(nl = nl-![C(cp)+ (cp,cp)/V1]ne iP (q,lcp(O) 

by the corollary to lemma 4, and it remains only to 
show C(cp)(n)eip (</>lcp(OlE'1)dr(I), i.e., 

t/1iCn+k) e-(M)14C(q,)"( _cp)<kl/l
iZ 

k=O (2kk 1)t I 
'" (n+k)2 (k+n)! 

=e-(</>,</»/2 I: --- -_-lIcpW(n+k) < 00. 

k=O 2kk! k! 

Convergence here is assured by the ratio test. 

Theorem 1.33 If H is self-adjoint and cpE'1)H, then 

[dr (H) + q(Hcp) +HHcp,cp ]'" = eiP(</>ldr(H)e-ip(<I». 

Proof· 

If H is the projection of 1R onto the one-dimensional 
subspace spanned by the normalized vector q,l, then 

33The formula Htot.e.I=UHcr .. U-1 is due to C. Mj'lller, Kg!. 
Danske Videnskab. Selskab, Mat.-fys. Medd. 23, No, 1, 1 (1945), 
Eq. (65). For the special form it takes in theorem 1, see p. 46 of 
G. WentzePG; also Eq. (14.21), p. 82 of K. 0, Friedrichs!O; or 
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dr(H) = C(4n)C*(4>!),34 so 

eip(<!»dr(H)e-ip (<!» 
= [eip(<!>lC (q,J)e-ip(<!>l][ eip(<!>lC* (q,l)e-ip (1»] 

[C(q,l)+ (q,l,q,)/V2][C*(q,I)+ (q"q,1)/V2] 

by the corollary to lemma 4. 
Since 

:D[C (q, 1) + (q,I,q,)/vl][C*(cpl)+ (q,,1P1)/V2] 
=:DC(CPI)C* (CP1) C:DC (q,l) =:DC* (q,I) ,29 

we have 

:D[C (q,I) + (q,I,q,)/V2][C*(q,I)+ (q"q,1)/V2] 
=:D[ C (q,l)C*(CPl) ]+[ (q"q,I)/V2]C (CPI) 

+[ (q,l,q,)/V2]C*(CPl) +! (q,l,q,) (q"q,1), 
so 

eip(1))dr(H)e- ip (1>) 

= C (q,I)C* (q,l) + [( q"CPl) /V2]C (CP1) 
+[ (q,l,q, )/V2]C*(q,I)+! (cp I ,q,) (cp,CP1) 

= dr (H) + ({ C[ (q"CPl)q,I]+C*[ (CP,q,I)CP1]} /V2) 
+! «cp,CPI)q,l,cp) 

= dr (H) + {[C(Hq,)+C*(Hcp)]/V2}+!(Hq"cp) 
Cdr (H) +q(Hcp) +HHcp,cp). 

Since eip(1))dr(H)e- ip (<!>) is maximal, the theorem is 
true when H is such a projection. 

Now let H be an arbitrary projection. By means of 
the canonical isomorphism 

®{ (H~)El.1[(I -H)~]}"""'®(~)(8)®[(I -H)~], 

with eip (1)):::'e ip (H<I>) (8)e lip (l-H)1>J, we can use lemma 1, 
and then its corollary, to reduce our problem to the 
case when H is the identity; i.e., we need only prove 

Cdr (I) +q(cp )+! (cp,q,)]'" = eip (1))dr (I)e-ip(<I». 

Here we use the canonical isomorphism 

with eip (<I»:::'e ip (1>l (8) 12, and lemma 1 followed by its 
corollary, to reduce the problem to the one-dimensional 
case which has already been considered. 

So the theorem is true for arbitrary projections. 
Now let H=a1P1+·· ·+amPm , where the PI are 

orthogonal projections and the al are real numbers ~ 1. 
Then, by linearity, by the previous paragraph, and by 
lemma 1, the theorem is true here also. 

Now let H be any self-adjoint operator "2:.1. By 
the spectral theorem, there exists a sequence HlotH 
which, by the previous paragraph, obey the conditions 
of lemma 3. By lemma 2, H obeys the remaining 
conditions, so we can assert theorem 1 for self-adjoint 
H"2:.I. 

Now let H = fooo "AdE). be any self-adjoint operator 
"2:.0. We know that the theorem is true for I and 

34 Footnote 12, p. 229, Lemma 3. 

HE1+I (since both are "2:.1), so 
eip(1))dr(H E 1+ I)e- ip (<!» -eip(1))dr(I)e- ip (<I>) 

= [dr(HE1+I)+q(HE1q,+q,)+HHE1q,+cp, cp)]'" 
- [dr (I) +q(cp) +! (q"cp) r'. 

Since [dr(HE1+I)-dr(I)J'"'=dr(HE1), we can say 

eip(<!»dr (HEI)e-ip (1)) 

~[dr(HEI+I)+q(HElq,+cp)+HHEICP+CP, cp)J'" 
- [dr (I)+q(q,) + Hcp,cp) ]""' 

~[dr (HEl) +q(HE1CP)+! (H E 1CP,cp) Jo, 
and 
eip(1))dr(HEI)e-ip(1>} 

::J[{dr (HE1) +q(HE1CP) +! (HE1q"q,) } oJ""'. 
To prove the reverse inclusion, let 

jE:Deip(1))dr (HE1)r:-ip (4>1, 
and 

'" e-iP(<I>lj="E NE:Ddr(HE1). 
k=O 

Then hm = jo'El.1· .. El.1jm'El.10El.1· .. E®o, and hrn---'>e- ip (4)lj. 
Since :Ddr(I)C:Ddr(HE1) (because 05.HEI5.1) and 
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+HHq"cp) , 
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dr(H) = C(4n)C*(4>!),34 so 

eip(<!»dr(H)e-ip (<!» 
= [eip(<!>lC (q,J)e-ip(<!>l][ eip(<!>lC* (q,l)e-ip (1»] 

[C(q,l)+ (q,l,q,)/V2][C*(q,I)+ (q"q,1)/V2] 

by the corollary to lemma 4. 
Since 

:D[C (q, 1) + (q,I,q,)/vl][C*(cpl)+ (q,,1P1)/V2] 
=:DC(CPI)C* (CP1) C:DC (q,l) =:DC* (q,I) ,29 

we have 

:D[C (q,I) + (q,I,q,)/V2][C*(q,I)+ (q"q,1)/V2] 
=:D[ C (q,l)C*(CPl) ]+[ (q"q,I)/V2]C (CPI) 

+[ (q,l,q,)/V2]C*(CPl) +! (q,l,q,) (q"q,1), 
so 

eip(1))dr(H)e- ip (1>) 

= C (q,I)C* (q,l) + [( q"CPl) /V2]C (CP1) 
+[ (q,l,q, )/V2]C*(q,I)+! (cp I ,q,) (cp,CP1) 

= dr (H) + ({ C[ (q"CPl)q,I]+C*[ (CP,q,I)CP1]} /V2) 
+! «cp,CPI)q,l,cp) 

= dr (H) + {[C(Hq,)+C*(Hcp)]/V2}+!(Hq"cp) 
Cdr (H) +q(Hcp) +HHcp,cp). 

Since eip(1))dr(H)e- ip (<!>) is maximal, the theorem is 
true when H is such a projection. 

Now let H be an arbitrary projection. By means of 
the canonical isomorphism 

®{ (H~)El.1[(I -H)~]}"""'®(~)(8)®[(I -H)~], 

with eip (1)):::'e ip (H<I>) (8)e lip (l-H)1>J, we can use lemma 1, 
and then its corollary, to reduce our problem to the 
case when H is the identity; i.e., we need only prove 

Cdr (I) +q(cp )+! (cp,q,)]'" = eip (1))dr (I)e-ip(<I». 

Here we use the canonical isomorphism 

with eip (<I»:::'e ip (1>l (8) 12, and lemma 1 followed by its 
corollary, to reduce the problem to the one-dimensional 
case which has already been considered. 

So the theorem is true for arbitrary projections. 
Now let H=a1P1+·· ·+amPm , where the PI are 

orthogonal projections and the al are real numbers ~ 1. 
Then, by linearity, by the previous paragraph, and by 
lemma 1, the theorem is true here also. 

Now let H be any self-adjoint operator "2:.1. By 
the spectral theorem, there exists a sequence HlotH 
which, by the previous paragraph, obey the conditions 
of lemma 3. By lemma 2, H obeys the remaining 
conditions, so we can assert theorem 1 for self-adjoint 
H"2:.I. 

Now let H = fooo "AdE). be any self-adjoint operator 
"2:.0. We know that the theorem is true for I and 

34 Footnote 12, p. 229, Lemma 3. 

HE1+I (since both are "2:.1), so 
eip(1))dr(H E 1+ I)e- ip (<!» -eip(1))dr(I)e- ip (<I>) 

= [dr(HE1+I)+q(HE1q,+q,)+HHE1q,+cp, cp)]'" 
- [dr (I) +q(cp) +! (q"cp) r'. 

Since [dr(HE1+I)-dr(I)J'"'=dr(HE1), we can say 

eip(<!»dr (HEI)e-ip (1)) 

~[dr(HEI+I)+q(HElq,+cp)+HHEICP+CP, cp)J'" 
- [dr (I)+q(q,) + Hcp,cp) ]""' 

~[dr (HEl) +q(HE1CP)+! (H E 1CP,cp) Jo, 
and 
eip(1))dr(HEI)e-ip(1>} 

::J[{dr (HE1) +q(HE1CP) +! (HE1q"q,) } oJ""'. 
To prove the reverse inclusion, let 

jE:Deip(1))dr (HE1)r:-ip (4>1, 
and 

'" e-iP(<I>lj="E NE:Ddr(HE1). 
k=O 

Then hm = jo'El.1· .. El.1jm'El.10El.1· .. E®o, and hrn---'>e- ip (4)lj. 
Since :Ddr(I)C:Ddr(HE1) (because 05.HEI5.1) and 
:Ddr(I)C:DC(HE1CP)=:DC*(HE1q,),29 we have 

eip (4)) hmE:D[{ dr (HE1) +q(HE1CP) +! (H E 1q"q,) }o]'" 

by corollary 2 to lemma 5. 
Further, eip (4) l hm ---'> j and 

[{dr(HE1)+q(HE1q, )+! (H E]cp,cp) }oT .. -eip(4)) hm 
= [eip(4))dr(HEl)e-ip(<I>)]eip(1>lhm 

(from the foregoing inclusion) 
= eip(.p)dr(HE1)hm ---'> eip(4))dr(HEl)e-ip(4>)j 

[since e-ip(4)lfE:Ddr(HE1)]. 

So, by the closure of 

[{ dr (HEl)+q(HE1CP)+! (HE1q"q,) loT"~, 

j is in its domain. Therefore 
eip(4))dr(HEl)e-ip(<I>) 

= [{dr (HE1) +q(HE1q,) +HHE1CP,q,) loT"~. 

Since H(I-EI)~I, we already know 
eip(4))dr[H(I - E 1) ]e-ip(4)) 

= [{drCH(I -E1)]+q[H(I -El)cp] 
+HH(I-E1)cp, cp)}oJ .... '. 

Combining these two results, we get 
eil>{4>ldr(H)e-ip(4» 

= [eip(<I>ldr (HEI)e-ip(4>l+eip(4»dr{ H (I - E 1) }e-ip (4))]''' 

= [[{dr (HEI)+q(HE1q,)+HHE1q"q,)}o]'" 
+[{dr[H(I-E1)]+q[H(I-E1)q,] 
+HH(I - E1)q" cp) } or]""' 

= [[{dr (HE1El.10)+q(HE1q,El.10)}o]""' 
+[{dr[OEl.1H(I -E1)]+q[0El.1H(I -El)cp]}or]'" 

+HHq"cp) , 



                                                                                                                                    

42 J. M. COOK 

where m has been decomposed into 

Therefore, applying the corollary of lemma 1 
separately to each summand, we have 

eip(</>ldf(H)e-ip(</>l 

'""'[[[{df(HE1)+q(HE1¢)}oJ""'®I2+II®02J""' 
+[01®I2+II®[{df[H(I -E1)J 

+q[H(I -E1)¢J}oJ""'J""'J""' +t(H¢,¢) 
= [[{df (HE1) +q(HE1¢) }oJ""'@I2 

+II®[{df[H(I -E1)J+q[H(I -E1)¢J}oJ""'J'" 

+HH¢,¢). 

Now we use lemma 1 and then its corollary in order 
to get from ®(E1m)®®[(I -E1)mJ back onto ®(m): 

eip(</>ldf(H)e-ip(</>l 

= [{df[HEI®H(I -E1)J 

+q[HEI¢®H(I - E1)¢J}oJ'" +HH¢,¢), 
or 

eip (</>ldf (H)e- ip (</» = [{ df (H)+q(H¢) +t (H¢,¢ } oJ"', 

and the theorem is true for self-adjoint H~ O. 
Finally, let H = f XdEx be an arbitrary self-adjoint 

operator. 
To finish the proof, we need only repeat the above 

usages of lemma 1 and its corollary with EI replaced 
by Eo. 

(We have actually proven the slightly stronger 
theorem 

[{ df(H)+q(H¢)+HH¢,¢) }oJ'" = eip(</>ldf (H)e-;p (</>1 .) 

CONVERGENCE TO THE Mj2)LLER 
WAVE OPERATOR 

Theorem 2. If H is self-adjoint and ¢E'£JH and 
eiHt¢ goes weakly to zero, then 

exp{i[df(H)+q(H¢)+HH¢,¢)J"'f} exp[ -idf(H)tJ 

goes weakly to e-(</>,</>1/4eip(</>1 as 1 -. ± 00. 

Proof· 

It is sufficient to show that 

e-ip(</>l exp{i[df(H)+q(H¢)+HH¢,¢)J"'/} 
Xexp[ -idf(H)tJ 

goes weakly to r(</>,q,l/4J. But 

e-ip(</>l exp{i[df(H)+q(H¢)+HH¢,¢)J""'I} 
Xexp[ -idf(H)tJ 

= exp{ ie-ip(</>l[df (H)+q(H¢) +t (H¢,¢) J'" eip(</>lt} 
Xe-ip(</>l exp[ -idf(H)tJ 

=exp[idf(H)tJe-ip (</» exp[ -idf(H)tJ by theorem 1 

=exp{ -i exp[idf(H)tJp(¢) exp[ -idf(H)tJ} 
=exp[ -ip(eiHt¢)J,36 

35 Footnote 12, p, 226, Th. 4. 

so we need only prove that if 1{1 goes weakly to zero, 
and 111{I11-. II¢II, then e-ip(,y1 goes weakly to e-(Ml/4I. 

Because e-ip(,y1 is uniformly bounded for all 1{1, and 
linear combinations of elements of the form 

C(¢I)C(CP2)' . ,C(¢m)¢(Ol 

are strongly dense in ® (where ¢iEm and ¢(OlE®(Ol, 
1I¢(Olll = 1), we need only prove 

(eip(,y1C(¢I)' .. C(¢ml)¢(Ol, 

C(¢ml +1)' . ·C(¢ml +m2)¢(Ol) -. e-(</>,q,1/4 

X (C(¢I)' . 'C(¢ml)¢(Ol ,C(¢ml +1)' . ·C(¢ml +m2)¢(Ol). 

We can evaluate 

(C(¢I)' .. C(¢ml)¢(Ol ,C(¢ml +1)' .. C(¢ml +m2)¢(Ol) 

= (¢(°l,C*(¢ml)' .. C*(¢I)C(¢ml +1)' .. C(¢ml +m2)¢(Ol) 

by using the commutation relations [C*(¢I),C(¢i)J'" 
= (¢i,¢i)I30 to shift all annihilation operators to the 
right where they are zero on ¢(Ol; so 

(C(¢I)' .. C(¢ml)¢(°l, C(¢ml +1)' .. C(¢ml +m2)¢(Ol) 

ml 
II (¢p(i),¢ml+i) 

permutations p i=l 

if ml=m2. 
If we try to evaluate 

(e-ip(,y1C(¢I)' .. C(¢ml)¢(Ol ,C(¢ml +1)' .. C(¢ml +m2)¢(Ol) 

in the same way, we get 

(e-ip(,y1¢(Ol,¢(Ol) LP IIi (¢p(i),¢ml +i)' Oml.m2 

plus a finite number of extra terms obtained by the 
commutation of C(¢i) or C*(¢i) past e-ip(,y1. However, 
these extra terms all contain factors of the form 
(¢i,1{I) or (1{1,¢,) (by the corollary to lemma 4) which, 
in the weak limit as 1{1 goes to zero, must vanish. 

Thus, since (e-ip (,y1¢(01,¢(Ol)=e-(,y,,y)/4 (by corollary 
1 to lemma 5) and (¢(Ol ,¢(O) = 1, the theorem is proven, 

Define U by 

U(t2,tl) = exp[idf(H)t2J 
Xexp{ [idf(H)+q(H¢)+t (H¢,¢) J""'(t1-12)} 

Xexp[ -idf(H)t I J}6 

(We will always assume H self-adjoint and ¢E'I'JH.) 
U(t2,t 1) is a unitary operator such that U(tl,!I) 

=1, U(tlh)= U(t2,tl)-1, and U(ta,12)U(t2,1t) = U(ta,t l), 

Theorem 2 states that 

weak limit U(0,1)=e-(</>,</»/4eip (</» as t-.±oc. 

(Since * is weakly continuous, this implies 

weak limit U (t,O) = e-(</>'q,) 14e-ip(</».) 
---

36 See J. M, Jauch and F. Rohrlich, footnote to, p. 118; or 
see W. Brenig and R. Haag, Fortschr. Physik 7, 183 (1959), 
especially p. 190. 
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see W. Brenig and R. Haag, Fortschr. Physik 7, 183 (1959), 
especially p. 190. 



                                                                                                                                    

PROPERTIES OF A BOSON FIELD 43 

Corollary 1. 

U(t2,tl)=exp[ip(e iHt'¢)J exp[ -ip(eiHll4>)]' 

Proof· 

Early in the proof of the theorem, we showed that 

U(O,lt)=exp[ip(4»J exp[ -ip(eiHll4>)]. 

Therefore, 

U(t2,0) = U(0/2)-1 = exp[ip(eiHI'¢)J exp[ -ip(4))J 

and 

U(t2,t l ) = U(t2,0)U(0,tl) 
=exp[ip(eiHI'¢)J exp[ -ip(eiHll4>)]. 

Corollary 2. If weak limit y,,=v/ and IItf.-II2 ---t 11y,,'112+0:2, 
then weak limit exp[ip(tf.-)J=exp( -0:2/4) exp[ip(tf.-')]. 

Proof· 

~"'9)(~'EF>IDC~,l extends to®(~)~®(9)(~,)®®(9)(~,l) 
and eip(~)"""eip(~1)®eip(~2) by the canonical isomor-
phism, where y"d.y,,' and tf.-l=Tei6y,,' with T=IIy"III/IWII. 
(If 11tf.-'II =0, then 9)(~, does not occur.) So we need 
only prove eip(~l) -t eip(~') in ®(9)(~,) and 

weak limit exp[ip(tf.-2)J=exp( -0:2/4)1 in ®(9)(~,1). 

For the first, 

eip(~l) = exp[ip(ei6tf.-')T J= exp[ieidr(8I)p(tf.-')e-idr(6l)T].3I> 

Therefore 

But IItf.-l11 -t IWII and ei6 -'> 1 (since weak limit tf.-l = tf.-' 
implies y,,1 -t tf.-' in one-dimensional9)(~,), so 

Therefore, 

eidr(6I)eiJl(~' lTe- idr (6l) -'> I eip(~') I-I, 

i.e., eip(~l) -'> eip(~'). 

For the second, we need only apply to @5(9)(~,1) the 
latter part of the proof of theorem 2. 

TIME-DEPENDENT SOURCE 

For time-independent Hamiltonians we will need 
Weyl's bounded version of the commutation relations, 
in the form given them by SegaJ37: 

Proposition. 

exp[ip(4)I)J exp[ip(4)2)J 
=exp[ip(4)I+4>2)J exp[i! Im(4)I,4>2)]. 

Proof· 

By the corollary to lemma 4, eip (</>l)e ip (</>.) and eip (</>1+</>2) 

37 I. E. Segal, Kg!. Danske Videnskab. Selskab, Mat.-fys. 
Medd. 31, No. 12, 1 (1959), especially p. 16. 

have the same commutation relations with any C(4)). 
But the set of all C(4)) is irreducible,38 so eip (</>l)e ip (</>;) 
and eip (</>1+<i>2) can differ only by a multiplicative 
constant, eip (</>1)e ip (</>2) = keip (</>1+</>2). It can be evaluated 
as follows: 

(e ip (</>1)e ip (</>2)4>(0) ,4>(0)) = k( eip (</>1+<i>2)4> (0) ,4>(0)). 

The left-hand side equals 

(eip (</>2)4> (0) ,e-ip(</>l)4> (0)) 

00 

=exp{ -[(4)1,4>1)+ (4)2,4>2)J/4} L (-4>2, 4>1)n2- n/n! 
n=O 

=exp{ -[(4)1,4>1)+ (4)2,4>2)+2 (4)2,4>I)J/4} by lemma 5. 

The right-hand side equals 

k exp[ - (4)1+4>2, 4>1+4>2)/4J 
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Corollary 

exp[ip(4)I)}' . exp[ip(4),,) J 
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We can expect U(t, -t) to converge weakly39 to a 
scalar multiple (Dyson's Z2) of the S matrix, as t -'> 00. 

From the proposition, and corollary 1 to theorem 2, 
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So, by corollary 2, weak limit U(t, -t)=e- l (</>'</»I. 

[=weak limit weak limit U(t2,lt) 
tl-+-OO t2--JoOO 

= weak limit weak limit U(t 2,ft) by theorem 2J 

that is, the S matrix is trivial. No scattering has 
occurred because the state of the scaiterer was not 
allowed to change.4o 

88 Footnote 12, p. 231, Th. 9. 
89 See Sec. 3, Case I of R. Haag, Phys. Rev. 112, 669 (1958); 

also Sec. 2, p. 205 of W. Brenig and R. Haag, Fortschr. Physik 7, 
183 (1959). 

40 G. Wentzel,1O Sec. 7, pp. 42 and 47. 
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37 I. E. Segal, Kg!. Danske Videnskab. Selskab, Mat.-fys. 
Medd. 31, No. 12, 1 (1959), especially p. 16. 

have the same commutation relations with any C(4)). 
But the set of all C(4)) is irreducible,38 so eip (</>l)e ip (</>;) 
and eip (</>1+<i>2) can differ only by a multiplicative 
constant, eip (</>1)e ip (</>2) = keip (</>1+</>2). It can be evaluated 
as follows: 

(e ip (</>1)e ip (</>2)4>(0) ,4>(0)) = k( eip (</>1+<i>2)4> (0) ,4>(0)). 

The left-hand side equals 

(eip (</>2)4> (0) ,e-ip(</>l)4> (0)) 

00 

=exp{ -[(4)1,4>1)+ (4)2,4>2)J/4} L (-4>2, 4>1)n2- n/n! 
n=O 

=exp{ -[(4)1,4>1)+ (4)2,4>2)+2 (4)2,4>I)J/4} by lemma 5. 

The right-hand side equals 

k exp[ - (4)1+4>2, 4>1+4>2)/4J 

by corollary 1 to lemma 5. Therefore 

k= exp{ - [(4)1,4>1)+ (4)2,4>2)+ 2(4)2,4>1) J/ 4} 

X exp[ (4) 1 +4>2, 4> 1 +4>2) / 4 J 
= exp{[ - 2(4)2,4>1)+ (4)2,4>1)+ (4)1,4>2) J/4} 

=exp{[(4)I,4>2)- (4)2,4>I)J/4} 

Corollary 

exp[ip(4)I)}' . exp[ip(4),,) J 
= exp[ip(4)I+' .. +4>n)J 

Xexp[it 1m Ll$i$j$n(4)i,4>;)]. 

We can expect U(t, -t) to converge weakly39 to a 
scalar multiple (Dyson's Z2) of the S matrix, as t -'> 00. 

From the proposition, and corollary 1 to theorem 2, 

U(t, -t)=exp{ip[(eiHt-e-iHt)4>J} 

Xexp[ -it Im(e2 iHI4>,4>)]. 

If weak limit eiH 14> = ° as t -'> ± 00 (this will be the case, 
by the Riemann-Lebesgue lemma, if 4> is in the absolutely 
continuous spectrum of H), then 

weak limit (eiHI-e-iHI)4>=O 
also, and 

II (eiHI-e-iHI)4>JI2= (e2iHI4>-4>, e2iHt4>-4» -'> 2il4>JI2· 

So, by corollary 2, weak limit U(t, -t)=e- l (</>'</»I. 

[=weak limit weak limit U(t2,lt) 
tl-+-OO t2--JoOO 

= weak limit weak limit U(t 2,ft) by theorem 2J 

that is, the S matrix is trivial. No scattering has 
occurred because the state of the scaiterer was not 
allowed to change.4o 

88 Footnote 12, p. 231, Th. 9. 
89 See Sec. 3, Case I of R. Haag, Phys. Rev. 112, 669 (1958); 

also Sec. 2, p. 205 of W. Brenig and R. Haag, Fortschr. Physik 7, 
183 (1959). 

40 G. Wentzel,1O Sec. 7, pp. 42 and 47. 



                                                                                                                                    

44 J. M. COOK 

We will now allow the interaction Hamiltonian to 
vary with time and generalize U to incl~de the case 
where f/J=f/Jt is a function of t. 

First let tl <t2<· .. <tn, and assume f/Jt=f/Jti if ti~t 
<li+l. Define U (tn,tl) = U(tn,tn-l)' .. U(t2,tl). Then, by 
corollary 1 to theorem 2, and the corollary to the 
proposition, 

n-I 

U(tn,lt)=exp{ip [L (eiHti+l-eiHli)f/Jti]} 
i=1 

·exp{ -it 1m L [(eiHli+l-eiHti)f/Jti, 
1:<:; ,:<:;j:<:; n-l 

n-l 

·exp[ -it 1m L (eiH(li+l-tilf/Jti,f/Jti)]. 
i=l 

By means of Pettis integrals41 we can write 

if all f/JIE'TJH. Therefore 

because, for fixed Ii and subdivision fi<l i+L1<'" <Ii 
+kL1=l i+1 of the interval [li,tH l], we have 

k 

1m L (eiH(ti+il>lf/Jti+U-l)l>,eiH[li+<i-l)ll.]f/Jti+U_l)l» 
i~1 

= Imk(eiHl>f/Jti,f/Jti) = ImM (L1-1 (e iH "- I)f/J ti,f/J Ii) 

= 1m (L1-1 (eiHl>_ I)f/Jti,f/Jti) 

X (l i+1-li ) --+ 1m fi 1i

+

1 

(iHf/Jt,f/Jt)dl, 

since f/Jt is constant in the interval and 

L1-1 (e iH l>_ J)f/Jti --+ iHf/Jti.32 

So, more generally, for any f/Jt such that the integrals 
involved exist, we define 

41 E. Hille and R. S. Phillips, Functional Analysis and Semi­
Groups (American Mathematical Society, Providence, Rhode 
Island, 1957), rev. ed., Chap. III, p. 77, DeL 3.7.1. 

where 6(t2,tJ) is the imaginary part of 

+t +00 
If weak limit J eiHTiHf/JTdT= J eiHTiHf/JTdT, 

-t -~ 

and 

exists but is 

~~~lIi~1 eiHTiHf/JTII 

> Ili:oo 

eiHTiHf/JTdTII, 

then (ignoring the phase factor), 

weak limit exp[iP([~1 eiHTiHf/JTdT) ] 

=Z2 exp[ip(i:

oo 

eiHTiHf/JTdT) ] 

by corollary 2 to theorem 2. 
If 

also, then 

by the same corollary, because weak convergence of 
one unitary operator to another implies its strong 
convergence. 

For example, suppose the interaction is switched on 
and off "adiabatically"43 as follows: Let f/JE'TJH be 
constant, and f/JT=f/Je-aIT1 , a>O. Then 

+1 J eiHTiHf/JTdT 
-I 

+t 
= J eiHT-al T1iHf/JdT = [iHe(iH+alT(iH+a)-l]_N) 

-I 

as t --+ CIJ. 

42 See the lemma on p. 399 of J. M. Jauch and F. Rohrlich.'O 

43 J. M. Jauch and F. Rohrlich,lO p. 134; W. Brenig and R. 
Haag,39 p. 191; K. O. Friedrichs,!o p. 16. 
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[The validity of this formal integration is confirmed 
by applying Fubini's theorem to the spectral integral 

for arbitrary ~.] So 

as before except that strong convergence has replaced 
weak convergence and Z2 has been eliminated. 

Now to finish our earlier discussion of the neutral 
scalar meson field. Let the external source be repre­
sented by a real scalar function p of space-time. Since 
expi(kot-k·x) is also invariantly defined, the integral 
h p(t,x) expi(kot-k·x)dO" of their product over a fixed 
spacelike surface 0" transforms like the three-volume 
element dO". (Restrict p so that the integral exists and 
is, not only in m, but even in '1)H-I.) Then q of that 
integral is the interaction Hamiltonian in the inter­
action picture, SO,44 in the Schrodinger picture 
Hinteraction = q(pu) where 

Pu(ko,k) = h p(t,x) exp( -ik· x)dO". 

The total Hamiltonian [Hfree+Hinteraction]""' exists 
and is self-adjoint by theorem 1. 

Addition of Hinteraction to Hfree lowers the energy 
spectrum by HPu,H-lpu) (theorem 1). If we parameter­
ize our positive-frequency hyperboloid by k, then Pu is 
represented by pu[(k2+m2)t, k] in the Hilbert space of 
complex-valued functions of k, square-integrable with 

44 See Th. 4 on p. 226 of footnote 12. 

respect to the measure d3k/ko•4• So 

HPu,H-Ipu) =t f d3k Ip.[(k2+m2)!, k] 12/ko2 

= -t f f d3xd3yV(x-y)p(t,x)p(t,y), 
u • 

where V(x)= -e-m,x' /47rlxl is the Yukawa potential.46 

We add this self-energy as a renormalization constant 
and redefine Htotal= [dr(H)+q(pu)+Hpu,H-lpu)I]""'. 

U(t2,l1) can now be given a more invariant 
appearance. 

(fl
t2 

eiH tiH<I> tdt) (ko,k) 

= (fIt. eiHtip.(t)dt) (ko,k) 

=i ft2 dt f d3xti.t,x)ei (kot-k.x), 
11 u(tl 

so the transformation relating the field on two space­
like surfaces 0"1 and 0"2 is 

in the interaction picture. 
Two of the "catastrophes" of quantum field theory 

arise in the above formalism as follows. If p is not in 
'1)H-I (infrared catastrophe47), or if it is a Dirac delta 
function (ultraviolet catastrophe), then "IIH-Ipll = 00" 

and the wave operator expip(H-Ip) of theorem 1 does 
not exist. Straightforward "completion of the square" 
does not correspond to a unitary transformation of 
Hilbert space.48 
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Synthetic Approach and Canonical Variables in a N onlocal Field Theory* 
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The analysis of the axiomatic structure of quantum field theory establishes what we call the synthetic 
approach. The translation in time is completely defined by its transformation function; it defines also 
canonical variables. The Hamiltonian is discussed at a later stage in order to establish the correspondence 
between this approach and the conventional one. An application is made to analyze Kristensen-MjZlller's 
theory of a nonlocal field. Its field variables are shown to be noncanonical; two field operators referring 
to two different points at the same time are not independent from each other, when the distance between 
the two points is of the order of the extension of the form factor; however, this fact does not disturb the 
calculation of the S matrix. The situation is clearly understood when the Kristensen-Mpller field operators 
are compared with the corresponding canonical variables. 

1. INTRODUCTION 

T HE purpose of this paper is to clarify the axiomatic 
structure of quantum field theory, especially 

when there is some form factor. The motivation 
behind this is to look for some field theoretical basis 
for a phenomenological approach in meson physics. 
In so doing, we make an approach in a synthetic way. 
In the traditional approach one starts with an assumed 
Lagrangian. In contrast to such an appro.ach, here 
several properties of a field are taken for granted at 
the onset, and one tries to construct a theory which 
exhibits these properties with minimum number of 
asSbmptions. 

The validity of quantum mechanics and the trans­
lation invariance together assert that there is a 
transformation function which transforms a state 
given at one time t, say, into the corresponding state 
at another time t'. It follows that one can solve the 
initial value problem. Also the canonical variables are 
explicitly defined by the transformation function. The 
existence of canonical variables, even when there is a 
form factor, was pointed out by Pauli,! The Hamiltonian 
is obtained uniquely when the transformation function 
is differentiated with respect to time. 

It has been pointed out by the author2 that the best 
way to handle the transformation function is to 
consider it in the exponential form. The arguments 
given there are amplified in the present paper. Our 
synthetic approach is applied to construct a trans­
formation function with some form factor. In order 
to reduce arbitrariness in the new approach, the 
correspondence with the traditional approach is con­
sidered by looking at the form of the Hamiltonian. 
When the perturbation expansion is applied, it is 
found that two conditions determine the transformation 

* This work was supported by U. S. Air Force. 
t On leave from Tokyo University of Education, Tokyo, Japan. 

Present address: Physics Department, New York University, 
University Heights, New York 53, New York. 

I W. Pauli, Nuovo cimento 10, 648 (1953). 

function uniquely; these conditions are the Lorentz 
invariance of the S matrix and the assumption that no 
scattering is represented directly by the Hamiltonian 
when the local limit is taken. No systematic investi­
gation of the self-action is attempted in the present 
paper. 

The new approach is compared with the theory of 
Kristensen and M~ller.3 It is found that the solution 
of the Kristensen-M~ller equation is not canonical; 
the commutator between two boson operators, for 
instance, for two different points at the same time 
does not vanish in general 

[cp(x),cp(y) ] I xo =l'O~O. (1) 

It vanishes, however, when the time tends to positive 
or negative infinity. This means that it is complicated 
to list the complete set of independent variables at a 
finite time in the Kristensen-l\I~ller theory. One must 
be critical of its use in a problem involving a bound 
state. On the other hand, the computation of the S 
matrix can be made disregarding the "noncanonicality." 
The theory of Bloch4 applies here, if a bound state is 
discarded. The canonical variable does not present 
any difficulty of this kind, but the classical equation 
corresponding to it is not so simple as the Kristensen­
l\I~ller equation. 

2. SYNTHETIC APPROACH 

For the sake of a systematic exposition, the synthetic 
approach is to be divided into two steps, the kinematics 
and the dynamics. The kinematics is to prepare a set 
of states so complete that experimental information of 
any kind can be described. Mathematically, this is to 
define the Hilbert space which constitutes the basis 
for the whole theory. The current definition of a 
Hilbert space, which is developed to cover ordinary 
quantum mechanics, is not suitable to apply to quan-

2 S. Tani, Phys. Rev. 115, 711 (1959); to be referred to as I. 3 P. Kristensen and C. MjZlller, Kg!. Danske Videnskab. Selskab, 
Some inadequate statement concerning the Lorentz invariance MatAys. Medd. 27, No.7 (1952). 
of the transformation function at a finite time is corrected at the 4 C. Bloch, Kg!. Danske Videnskab. Selskab, MatAys. Medd. 
end of Sec. 3 of the present paper; Phys. Rev. 117, 1616(E) (1960). 27, No.8 (1952). 
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I W. Pauli, Nuovo cimento 10, 648 (1953). 

function uniquely; these conditions are the Lorentz 
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scattering is represented directly by the Hamiltonian 
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gation of the self-action is attempted in the present 
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2 S. Tani, Phys. Rev. 115, 711 (1959); to be referred to as I. 3 P. Kristensen and C. MjZlller, Kg!. Danske Videnskab. Selskab, 
Some inadequate statement concerning the Lorentz invariance MatAys. Medd. 27, No.7 (1952). 
of the transformation function at a finite time is corrected at the 4 C. Bloch, Kg!. Danske Videnskab. Selskab, MatAys. Medd. 
end of Sec. 3 of the present paper; Phys. Rev. 117, 1616(E) (1960). 27, No.8 (1952). 
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tum field theory.· However, we can consistently state 
that the "Hilbert space" is defined, as a convention, 
when the manipulation with creation-annihilation 
operators of free particles is well defined. 

2.1. Kinematics 

Actually, most of the relevant kinematical consider­
ations have been already made by various authors. 
A synthetic study was made by Foldy6 with regard to 
the Lorentz transformation of the field equation for 
spin 0, t, or 1. The states of free particles as the re­
presentations of the Lorentz group were discussed by 
Haag.7 The physical meaning of free particles was 
exhibited by many authors8 in terms of asymptotic 
states. According to their physical meaning, creation­
annihilation operators are to be introduced for every 
kind of stable particle, whether elementary or com­
posite9 ; but one must note some subsidiary conditions.!O 
Up to this point, the scheme of the present quantum 
field theory is quite consistent and general; we are not 
disturbed by the configuration where several particles 
approach close to each other. 

2.2. Dynamics 

"Ve deal with flat spacelike surfaces, t= constant; 
this is not favorable to keep the Lorentz invariance of 
our theory, but it simplifies the arguments on the 
translational invariance without obscuring its general 
feature. Any state vector in the "Hilbert space" 
defined by the kinematics can be associated with one 
of these surfaces. At another time, the state of the 
system should be represented in the same "Hilbert 
space," but it may be laid in a different way because 
of the interaction among particles. Mathematically, 
there should be a well-defined transformation function. 

Following the discussions exhibited in I, we put the 
transformation function from the time t' through t in 
the form 

U(t,t') =exp[ (iI2) J d4xE(t,xo)F(x) ] 

xexp[ (-iI2) f d4YE(t',yo)F(y) 1 (2) 

5 Compare, e.g., K. O. Friedrichs, Mathematical Aspects of tlte 
Quantum Theory of FiekJs (Intersdence Publishers, Inc., 1'ifew 
York, 1953), Part IV. Van Hove's paradox related to this point 
was discussed in 1. 

• L. L. FoIdy, Phys. Rev. 102, 568 (1956). 
7 R. Haag, Kg!. Danske Videnskab. Selskab, Mat.-fys. Medd. 

29, No. 12 (1955). 
8 F. J. Dyson, Phys. Rev. 75, 1737 (1949); F. E. Low, ibid. 97, 

1392 (1955); H. Lehmann, K. Symanzik, and W. Zimmermann, 
Nuovo cimento 1, 205 (1955). 

9 K. Nishijima, Phys. Rev. 111, 995 (1958); W. Zimmermann, 
Nuovo cimento 10, 597 (1958); R. Haag, Phys. Rev. 112, 669 
(1958). 

10 S. Tani, Phys. Rev. 117, 252 (1960). 

Here E(a,b) denotes the step function 

E(a,b) {
+1 

for 
-1 

The S matrix is to be defined by 

a>b, 

a<b. 
(3) 

(4) 

The conditions to be satisfied by the operator F(x) 
are as follows: 

(1) F(x) must be Hermitian to guarantee the 
unitarity. 

(2) In view of Eq. (4), the energy conserving part 
of F(x) must be Lorentz invariant. 

(3) The S matrix defined by Eq. (4) must leave the 
vacuum and the one-particle states invariant. 

(4) It is possible and convenient to choose F(x) as 
a time-reversal invariant. 

(5) The validity of Eq. (4) or (4'), 

(-7+co 
S=lim U(t,t'), 

t' -7 - co 
(4') 

requires that the matrix element of F(x) is regular; 
operations with the delta functions and the principal 
value singularities must be well defined in momentum 
space.ll 

(6) When there exist a number of subsidiary condi­
tions, F(x) must be commutable with all of them. 

Once the F(x), which satisfies all the foregoing 
conditions, is given in terms of the creation-annihilation 
operators, all the information concerning the dynamics 
is implied by it. All the invariance properties known 
in quantum field theory can be incorporated with our 
formalism; especially the invariance against a trans­
lation in time is straightforward as seen from Eq. (2). 

In a proper theory of the S matrix one should 
derive it from some specific assumption about the 
interaction such as is given by the field equation. 
After a specific assumption is introduced, only a 
smaller number of parameters than in the general 
framework for the S matrix should be at our disposal. 
We note here that the Hamiltonaian can be defined 
uniquely by differentiating the transformation function 
with respect to time. From the definition of the 
Hamiltonian 

i(dl dt)U(t,t') = H(t)U (t,t'), 

it is shown to be given by 

H(t)= lo=/3X(F(x)+(1/2!)[F(X), -iG(t)] 

(5) 

+ (1j3!){[F(x), -iG(t)], -iG(t)}+ .. ·); (6) 
----

11 A mathematically neat account on this point is given in a 
recent paper; see S. Tani (preprint). 
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the integration is extended over the three-dimensional 
surface, xo=t. We have put 

G(t) = t f d4ye(t,Yo)F(y). (7) 

As a result of the translational invariance, H(t) is 
independent of t'. 

In order to have a "theory" of the S matrix along 
the line mentioned previously, here we follow an 
analogy to the traditional approach. [We label channels 
according to the numbers and types of free field 
operators with which they are concerned. We name 
the fermion and the boson the nucleon and the pion, 
respectively, just as a matter of nomenclature. The 
channel where a single pion interacts with the nucleon 
current is labeled as (NN7r) , for instance.] Now, we 
deal with a simple example and assume that there is 
no scattering directly represented in the Hamiltonian; 
F(x) in all channels other than (NN7r) is given as a 
functional of the interaction introduced in (NN7r). 
For instance, Eq. (6) in the channel U\Tl\T7r7r) reads 

O=FNNn(X)+![FNN .. (X), -iGNNr(t)]NNn 

+t[FNNn(X), -iGNN .... (I)]NNn+· . '. (8) 

1.'he subscripts to the commutator specify the part to 
be retained after the commutator calculation. One 
can see how the operator FNN .... (X), which yields the 
pion-nucleon scattering phase shift, is determined in 
terms of FNN".(X); it starts with the lowest-order Born 
approximation, the second term on the right-hand 
side of Eq. (8), and is corrected for the rescattering by 
the third term, and so forth. 

On going into a further detail, Eq. (8) must be 
modified slightly in order to keep the S matrix Lorentz 
invariant. If the energy conserving part of F(x) 
happens to violate the Lorentz invariance, the 
Hamiltonian is to be modified so that noninvariant 
terms cancel each other on both sides of Eq. (6). 
Accordingly, instead of Eq. (8), we calculate FNNn 
starting from 

FNNn(x)-HNN",,(x) 

= t[FNN .. (X),iGNN".(t)]NN .... 
+![FNN".". (x) ,iGNN".". (t)]NN".".+ .. '. (9) 

Rules for making correction of this kind are exhibited 
in Sec. 3. 

2.3. Remarks 
We have specified only the channel into which the 

primary interaction is introduced; the form of FNN .. is 
left open, and the present approach allows us to 
discuss the quantization of a field theory with a non­
local form factor. The unitarity of the relevant trans­
formations is guaranteed straightforwardly in our 

approach, while the Lorentz invariance can be 
established only by perturbation expansion. In this 
way, the feature of the present approach is comple­
mentary to the field theory with use of Heisenberg 
operators.l2 

Finally, a remark on the physical meaning of the 
representation used is due here. A representation, 
which we call the physical-particle representation, was 
discussed in I; aU the effects of the self-action are 
eliminated in this representation. The constrnction of 
such a representation violates the crossing symmetry. 
We have to discriminate the two-pion creation by a 
nucleon from the pion-nucleon scattering, for instance. 
In view of this asymmetry in the physical-particie 
representation, we start with the interaction repre­
sentation in constructing the operator F(x). Once 
F(x) is decided, one may go over to the physical­
particle representation in order to check the interpre­
tation of the S matrix. 

3. CONSTRUCTION OF TRANSFORMATION 
FUNCTION WITH A FORM FACTOR 

Let if;(x) and cp(x) denote a free field operator for a 
nucleon and a pion, respectively. At the first order of 
the perturbation expansion, we put 

F(l) (x) = FNN .. (x) = f D(x',x",x"') 

Xo (x- x") :{t(x')cp(x")if;(xlll
) : • (10) 

Hereafter, we use the following abbreviation for the 
volume element in the integral 

D (x',x" ,XIII) = d4x'd4x" d4x'" j (x' ,x" ,x"'), (11) 

with j(x',x",xf!!) denoting the form factor for the 
vertex. In Eq. (10) we have considered only the case 
where the meson coordinate x" is identified with the 
argument x of F; this is the same as was considered by 
Pauli.Is We ignore the possibility of having a subsid­
iary condition. The notation : A: means to take the 
ordered form of the operator A according to Wick'srule.14 

The superscript denotes the order of the perturbation. 
Discarding the mass operators, we have two terms 

at the second order, 

12 One can find further references in the following paper: 
G. Kallen and A. Wightman, Kg!. Danske Videnskab. Selskab, 
Mat.-fys. Skrifter 1, No.6 (1958). K. Nishijima [Phys. Rev. 119, 
485 (1960) ] has studied the theory in which microscopic causality 
is taken for granted. His result is similar to ours in that perturba­
tion expansion plays an essential role in the proof, although 
microscopic causality excludes anv form factor. 

13 One can generalize Eq. (10) "by interchanging x" with x' or 
X'II and by taking a linear combination of these terms, but such 
a general expression is not necessary for our purpose. 

14 G. C. Wick, Phys. Rev. 80, 268 (1950). 
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FNNNN (2) obtains without introducing any HNNNN (2). 

On applying Eq. (6) to the channel (NNNiY), we find 

FNNNN (2) (x) = f D(x',x",x"')D(y',y",y''') 

Xo (x- x")t :{;(x'){;(y') 

XD(x"- y")1/; (y"')1/; (x"') :. (13) 

This is Lorentz invariant. In the channel (NiY?r?r), we 
have 

= f D(x',x",x''')D(y',y'',y''')· 1· E(Xo",yo") 

x [0 (x- x") +0 (x- y") J: {; (x')1jJ (x") 

XS(x'''-y')IjJ(y'')1/;(y'''):. (14) 

The E function in Eq. (14) cannot be incorporated with 
an S function to give an S function. The corrected 
form for FNNn (2) is given by replacing E(XO",yo") by 
Eexo"',yo') ; we have 

FNN"" (2) (x) 

= f D(x',x",x"')D(y',y",y"')![o(x-x")+o(x-y")J 

X: {; (x')IjJ(x")S (x'" - y')1jJ (y")1/; (y''') : . (15) 

It is noted that F(2) defined previously is time-reversal 
invariant. Introducing the phase matrix rJ by the 
exponent of the S matrix 

S= exp[2irJJ, (16) 

its second-order part is given by 

rJ(2) = f D(x',x",x''')D(y',y'',y''') 

X [t: {;(x')cp(x")S (x'" - y')cp (y")1/;(y"') : 

+1: {;(x'){;(y')D (x" - y")1/; (y''')1/; (x"') : ]. (17) 

"Gp to the second order, the F(x) is Lorentz invariant. 
It will be found that this is not true any more at the 
third order. Even in the local limit, only the energy 
conserving part of F(x) is Lorentz invariant. Since 
we do not go beyond the second order in the analysis 
of the Kristensen-1Vr¢ller equation, we only give the 
result without proof. H(3) is defined uniquely when 
we require it to vanish in the local limit. This require­
ment is legitimate, because H(3) becomes necessary 
because of the retardation effect within the form factor. 

4. ANALYSIS OF KRISTENSEN-M~LLER'S EQUATION 

The field equations proposed by Kristensen and 
M¢ller are given in our example by 

(- 0 +m2) <,0 (x) 

= f X(x')o (x-x")x (x"')D(x',x",x"'), (18) 

[~(a/ax)+A{JX(x) 

= f o(x-x') cp(x")x(x"')D(x',x",x"'), (18') 

= f x(x')cp(x")o(x-x"')D(x',x",x'''). (18") 

We solve these equations by perturbation calcula­
tions. The solution depends on the boundary condition. 
As was shown in I, it is sufficient to solve the equation 
under the standing wave boundary condition. The 
relation among cp operators under different boundary 
conditions is given by Eq. (19), where the suffixes, 
r, a, and s, denote the out-going wave, the in-coming 
wave, and the standing wave solutions, respectively; 

The 'Ps is obtained by performing the iteration with 
the equation 

CP.(x) = H exp[ -irJJIjJ(x), exp[irJJ 

+ exp[irJJIjJ (x) . exp[ -irJJ} 

+ f D(x-x")x8 (x')XS (x"')D(x',x",x"'). (20) 

On the other hand, 'Pr is obtained by working with 

CPr(X) = IjJ (x) + f [D(x-x")+tD(x-x")Jxr(x') 
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Let us investigate the translational property of the G(x:xo) is given by 
<P.. Since the translational property for a free field 
operator is straightforward, we try here to find a G(x: xo) 
unitary transformation which transforms a free field 
operator into the corresponding Kristensen-l\I!1Iller =tJD(X"XIl'XIl')f(XO'XO')~(X')cp(XIl)if;(X"') 
operator; 

On putting the unitary transformation In the 
exponential form 

U( <P: xo) = exp[iG( <P: xo)], 

G( <p: xo) is found to be given by 

(23) 

G( <p: xo) = t J f(XO,Xo"){t(x')cp (x")if;(x"')D(x' ,x" ,x"') 

+t f D(x',x",x"')D(y',y",y"') 

x [f(XO,Xo") + f(xo,yo") J{t (x')cp (x") 

XS(x"'-y')cp(y")if;(y"'). (24) 

In fact, there is no unitary transformation in the form 
of Eq. (22); instead of Eq. (22), we have to put 

<P.(x) = exp[ -iG( <p: xo)} [cp(x)+~<p J 

~<p(x) is given by 
. exp[iG( cp: xo)]. (25) 

~cp(x)=l f D(x',x",x"')D(y',y",y"') 

X [ ( ", ') (" ")J f Xo ,Yo - f Xo ,Yo 

x [f(XO,XO") - f(XO,yO") J 
X [{t(x')D(x- x")S(x"'- y')cp (y")if; (y"') 

-{t(x')cp(x")S(x"'- y')D(x- y")if;(y"')]. (26) 

If it happens that there are plus signs in the second 
and the third brackets, instead of minus signs, ~cp can 
be removed by a unitary transformation, namely, by 
modifying the G ( <p: xo); however, this would cause an 
undesirable change in the S matrix. It is to be noted 
that the asymptotic form of G (cp: xo) as Xo ---? ± 00 

coincides correctly with the corresponding term in ±'7. 
[The phase matrix '7 has been defined by Eqs. (4), (10), 
(16), and (17). Physically there should be no contribu­
tion from the first-order term, Eq. (10), but for the 
sake of direct comparison with Pauli's result we 
retain it formally.] 

Similar calculations are performed with regard to x. 
The transformation for Xs is given by 

x.(x) = exp[ -iG(X: xo) J[if;(x)+~xJ 

Xexp[iG(x:xo)]. (27) 

+l f D(x',x",x"')D(y',y",y"')[f(XO,XO') +f(XO,yo') J 

X :{t(x'){t(y')D(x"- y")if; (y"')if; (x"') : 

+l J D(x',x",x"')D(y',y",y"') 

X : ~(x')cp(x")S (x'" - y')cp (y")if; (y"') :. (28) 

~x is given by 

~X(x) =l J D(x',x",x"')D(y',y",y"') 

X [f(XO" ,yo") - f (xo' ,yo') J[ f(XO,Xo') - f(XO,yO') J 
XS(x- x'){t(y')D(x"- y")if; (y'")if; (x"'). (29) 

One can see that G (x: xo) is different from G ( <p: xo), 
but its asymptotic limit as Xo ---? ± 00 gives exactly ±'7. 

The effect of the ~cp is shown when we calculate the 
commutator between <P. for two different points with 
the same time coordinate 

[cp. (x), cps (y) J I xo =YO 

= t J D(x',x",x"')D(y',y",y''')~(x')S(x''- y')if;(y"') 

X [f (Xo'" ,yo') - f(XO" ,yo") J. [f(XO,XO") - f(Xo,yO") J 
X[D(y-x")D(x-y") -D(x-x")D(y- y")]' (30) 

This result is independent of the boundary condition, 
as one can check directly. The deviation of the com­
mutator from its canonical form is a feature inherent 
in Kristensen-.YI!1Iller's equation. One sees that the 
right-hand side of Eq. (30) vanishes either when one 
takes the local limit or when the time Xo tends to the 
infini ty .15 

On the other hand, the canonical variables defined 
in the last section do not present any abnormality like 
Eq. (30). As for the cp operator, for instance, the 
canonical variable is given by 

CPo (x) = U(xo)-I·cp(X)· U(xo), (31) 

15 The conclusion reached here seems to have been suggested 
by C. Hayashi [Progr. Theoret. Phys. (Kyoto) 10, 538 (1953); 
11,226 (1954)]' Unfortunately, the quantization adopted in his 
paper is quite different from what has been discussed here. 
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where the transformation function U (xo) has been 
given in the last section; from Eqs. (2), (10), (13), (15), 
and (24), we see that 

U(xo)=exp[iG(CP:Xo)+~ f D(x',x",x"') 

XD(y' ,y",y"')E (xo,xo") : {;(x'){;(y') 

XD(x" - y")ift(y"')ift(x''') 1 (32) 

From Eqs. (32) and (25), we see that, if the non­
canonical term Acp were discarded, the Kristensen­
l\I~ller operator CP8 and the canonical variable cpc 
would coincide. As for the nucleon operator, two kinds 
of operators are connected by 

Xs(x)= Vex: XO)-l. [Xc(x)+AX(x)+' .. ]V(x:xo) (33) 

with the unitary transformation function V(x:xo) 
given by 

(34) 

Thus, if the noncanonical term AX were discarded, the 
x. and the Xc would be connected through a unitary 
transformation. It is to be noted that V (x: xo) reduces 
to the identity and Ax(x) vanishes if the time Xo tends 

to the infinity; the Kristensen-M~ller operator and 
the canonical variable coincide asymptotically. It is 
now clear that the noncanonical commutation relation 

[CPs (x) ,xs (y)] I xO=YO~O (35) 

cannot be brought under the canonical form by 
performing a unitary transformation on X.. Pauli 
calculated the commutator only up to the first order in 
the perturbation expansion and he did not bring up 
this point. 

As remarked already, the translational property of 
both CPs and Xs is consistent with the definition of the 
S matrix, which is based on the property of a canonical 
variable. Consequently, the relation among the 
Kristensen-M~ller operators under the different bound­
ary conditions in Eq. (19) is identical with the cor­
responding one among canonical variables; the effect 
of the noncanonical terms is eliminated in the calcula­
tion of the S matrix. One must be critical of the use of 
Kristensen-J\l~ller's theory, if there appears a bound 
state. 
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Some Counting Theorems in the Theory of the Ising Model and 
the Excluded Volume Problem 

M. F. SYKES· 
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The problem of the exact enumeration of self-avoiding random walks on a lattice is studied and a theorem 
derived that enables the number of such walks to be calculated recursively from the number of a restricted 
c1a~s of closed graphs more easily enumerated than the walks themselves. The method of Oguchi for deriving 
a high-temperature expansion for the zero-field susceptibility of the Ising model is developed and a cor­
responding theorem enabling the successive coefficients to be calculated recursively from a restricted class 
of closed graphs deduced. The theorem relates the susceptibility to the configurational energy and enables 
the behavior of the antiferromagnetic susceptibility at the transition point to be inferred. 

1. INTRODUCTION 

I T is the purpose of this paper to investigate the 
configurational counting problem presented by the 

method of Oguchil for deriving the high-temperature 
expansion of the zero-field susceptibility of the Ising 
model. This is one of a class of problems connected 
with the enumeration of linear graphs on a lattice 
which arise in the theory of cooperative assemblies 
above their transition point and which may be called 
high-temperature counting problems. A problem of 
very similar nature and which arises in the theory of 
long-chain polymers in dilute solution is the enumer­
ation of nonself-intersecting walks on a lattice by a 
study of the topologically equivalent linear graph. 
The relation between the two problems was remarked 
by Oguchi and has recently been studied by Temperley2 
and Fisher and Sykes.3 For our present purpose the 
two problems are conveniently studied together. We 
shall first develop a method of obtaining the numerical 
value of C'" the number of self-avoiding walks of n 
steps on a given lattice, for small values of n. The 
method will then be modified to apply to the more 
complex enumeration problem presented by the co­
efficients of the susceptibility expansion. 

Numerical results will be given for a number of 
plane and three-dimensional lattices. The preliminary 
application of this data to the polymer problem has 
been made by Fisher and Sykes,3 where a bibliography 
is also given. For applications of the data on suscepti­
bility expansions reference should be made to a review 
article by Domb4 where an extensive bibliography is 
given. The interpretation of the data is to be discussed 
in detail in a subsequent paper. 

2. ENUMERATION OF LONG CHAINS 

For small values of n the number of nonself­
intersecting walks of n steps, or as we shall call them 

• Imperial Chemical Industries Research Fellow, University 
of London. 

IT. Oguchi, J. Phys. Soc. Japan. 6, 31 (1951). 
2 H. N. V. Temperley, Phys. Rev. 103, 1 (1956). 
3 M. E. Fisher and M. F. Sykes, Phys. Rev. 114, 45 (1959). 
4 C. Domb, Advances in Phys. (to be published). 
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chains, on a given lattice may be obtained by direct 
enumeration of all the possible types. By an obvious 
extension of the method developed by Wakefield' for 
the enumeration of polygons on the simple cubic 
lattice, the chains may be classified into space types. 
For example, on the simple quadratic lattice there are 
four possible space types of 3-chain, which we illustrate 
in Fig. 1, making a total contribution of 18N on a 
lattice of N sites, and since we require the number of 
chains from a fixed origin and each of these types 
CQuid be walked in both directions, we have 

NC3=36N or c3=36. 

The description of the possible types need not be by 
drawing, but since the number of chains increases 
rapidly with n, it is difficult to proceed very far by 
direct methods. For example, on the simple quadratic 
lattice there are 2374444 distinct walks of 14 steps, 
and since the maximum contribution of a space type 
on this lattice is 8N, there cannot be fewer than 148403 
of these. To avoid this difficulty we require methods 
which obviate detailed enumeration of the chains. 

We have approached the problem as follows. If a 
self-avoiding walk of (n-1) steps on a lattice of 
coordination number q is continued in any of the 
(q-1)=0' directions that avoid an immediate reversal , 
the result is either a self-avoiding walk of n steps or a 
walk with one self-intersection which can occur with 
one of the two topologically distinct linear graphs 
illustrated in Fig. 2. The graph (a) results from a 
self-intersection at r steps from the origin. We shall 
describe this as a "tadpole," and we shall denote the 
number of such graphs on a given lattice by T r •8 • As 
usual, this is to be understood as the number reckoned 
per site, the total number of distinct structures on a 
torus of N sites being NTr ••• With this definition every 

2N 4N 

FIG. 1. The four possible space types of 3-chain 
on the simple quadratic lattice. 

4N 

5 A. J. Wakefield, Proc. Cambridge Phil. Soc. 47, 419 (1951). 
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For example, on the simple quadratic lattice there are 
four possible space types of 3-chain, which we illustrate 
in Fig. 1, making a total contribution of 18N on a 
lattice of N sites, and since we require the number of 
chains from a fixed origin and each of these types 
CQuid be walked in both directions, we have 

NC3=36N or c3=36. 

The description of the possible types need not be by 
drawing, but since the number of chains increases 
rapidly with n, it is difficult to proceed very far by 
direct methods. For example, on the simple quadratic 
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and since the maximum contribution of a space type 
on this lattice is 8N, there cannot be fewer than 148403 
of these. To avoid this difficulty we require methods 
which obviate detailed enumeration of the chains. 

We have approached the problem as follows. If a 
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coordination number q is continued in any of the 
(q-1)=0' directions that avoid an immediate reversal, 
the result is either a self-avoiding walk of n steps or a 
walk with one self-intersection which can occur with 
one of the two topologically distinct linear graphs 
illustrated in Fig. 2. The graph (a) results from a 
self-intersection at r steps from the origin. We shall 
describe this as a "tadpole," and we shall denote the 
number of such graphs on a given lattice by T r •8 • As 
usual, this is to be understood as the number reckoned 
per site, the total number of distinct structures on a 
torus of N sites being NTr ••• With this definition every 

2N 4N 

FIG. 1. The four possible space types of 3-chain 
on the simple quadratic lattice. 

4N 

5 A. J. Wakefield, Proc. Cambridge Phil. Soc. 47, 419 (1951). 



                                                                                                                                    

ISING MODEL AND THE EXCLUDED VOLUME PROBLEM 53 

tadpole will be walked twice, the s steps of the "head" 
being walked once in each sense. The graph (b) results 
from a self-intersection at the origin. If pn is the 
number of polygons per site, there are np .. polygons 
through a given point, and each will be walked in two 
senses. Thus 

n-3 

Cn=ucn-I-2 L Tr,n-r- 2npn' (1) 
r=l 

Equation (1) enables us to deduce Cn from Cn-I by 
enumerating the tadpoles and polygons of order n 
(the order of a lattice constant being the number of 
bonds it contains, e.g., the order of Tr .• is r+s). 

For example, by careful drawing it is possible to 
deduce the first six values of Cn on the simple quadratic 
lattice. To add four more is laborious, but with Eq. 
(1) this is achieved without further drawing, since the 
number of square-headed tadpoles of each order can 
quite easily be deduced by counting the number of 
ways a square head can be added to each walk of order 
four less. The other tadpoles required, those with 
hexagonal and octagonal heads, present no difficulty 
at this stage. 

Y+$=n 
(a) (b) 

FIG. 2. Linear graphs that result from a self-intersection on the 
last step of a random walk: (a) tadpole, Tr,.; (b) polygon, Pn. 

An obvious extension of this idea is to use the same 
technique to count the tadpoles. If we add a further 
step to the tail of the tadpole Tx-I,y, the product is 
either a new tadpole Tr,y or one of the three products 
whose linear graphs are shown in Fig. 3, the number 
of these linear graphs per site being denoted by (r,s,t)d, 
pr' P8, (r,s,!)s, respectively. We shall refer to (a)-(c) 
collectively as "generalized figure-eights." In the sub­
classification we have introduced the term "figure-eight 
star" to emphasize the fact that the lattice constant 
(r,s,!)s is a "star" in the notation of Riddell, 6 dumbbells 
and orthodox figure-eights being "trees." 

The number of walks of order n can thus be made 
to depend on the number of generalized figure-eights 
and polygons of order n. The exact form of this de­
pendence is not obvious and in the next section we 

6 Note. "Stars" are connected graphs without a cutting point. 
"Trees" are connected graphs with one or more cutting points. 
A cutting point is a point where the graph could be cut into two 
or mOLe separated graphs by cutting all the lines going to this 
point (Riddell'&). (a) R. J. Riddell, thesis, University of Michigan, 
1951. 

ToD TOO <D 
(al (b) (el 

FIG. 3. Linear graphs that result from the intersection of a 
tadpole with its tail. (a) Dumbbell, (r,s,t)d; (b) orthodox figure­
eight, pr·p.; (c) star figure-eight, (r,s,/) •. r+s+l=x+y=n. 
Note. In (c) the distinction between the case of "s inside" and 
"s outside" (external bridge, internal bridge) is only meaningful 
for two-dimensional lattices. (r,s,t). is to be taken as the total 
number of such structures. 

shall derive a recurrence relation that enables the 
successive Cn to be calculated. 

3. CHAIN COUNTING THEOREM 

We begin by examining the effect of adding one 
more step to the tail of the tadpole Tr- I ,8, which we 
may do in U ways if r-1 ¢,O. For this case, we have 

Tr,8 = uTr- I,. - Fr,s, (2a) 

where Fr,. is a linear sum of lattice constants7 of order 
r+s and of type (a), (b), or (c) of Fig. 3. If r-1=0, 
the tadpole reduces to the polygon p. to which we 
may add a unit tail in (u-1) ways at any of s points 
to form T1,8 or a star figure-eight [Fig. 3(c)], 

(2b) 

where F l ,8 is again a linear sum of lattice constants of 
order s+1. 

From (2a) and (2b), 

10-3 ,,-3 

L Tr,n-r=U L Tr-l,n-r+(n-1)(u-1)P1O-I 
r=l r=2 

10-3 

- L Fr ,>1-r. (3) 
r-l 

On replacing n by n+1 in (1) and subtracting U 
times (1) from the result, the two summations that 
involve tadpoles cancel by virtue of (3), and we obtain 

n-2 

=2npn-2(n+1)pn+1+2 L Fr,1O-r+J. (4) 
>'=1 

It remains to establish the form of the summation 
in (4), which is a linear sum in generalized figure-eights 
or order (n+1). Dumbbells and orthodox figure-eights 
that occur in this sum will be examined together, an 
orthodox figure-eight p,;, py being regarded as the 
dumbbell (X,O,Y)d. In our notation (r,s,t)d= (!,s,r)d, 
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and it is therefore necessary to distinguish between 
the cases r~1 and r=l. Any dumbbell (r,s,t)d for which 
r~ t will be formed twice in the synthesis of T n-T+l.T in 
accordance with the scheme 

and twice in the synthesis of T n-I+l,t. If r= t the 
dumbbell will be formed four times in the synthesis of 
T ,,-T+1.T in accordance with the scheme 

0s0 
T t 

0s0 
T t 

0s0. 
T t 

The contribution to L F r ,n-T+1 is therefore always 
4(r,s,t)d. Any star figure-eight (r,s,t)8 will occur in the 
synthesis of T 1>-T-8+1,r+8, T n-r-l+l,r+l, T n-8-1+1,8+1, if 
r, s, t are all different, and will be formed twice in each 
case to give a total contribution of 6(r,s,t)8' If any two 
of r, s, t are equal, r= s say, then the constant will 
occur twice in T n-r-8+1.r+8 and four times in T n-r-l+l,r+1 
in accordance with the scheme 

Finally, if r=s=t, the constant will be formed SIX 

times in the synthesis of T ,,-2r+l,2r. 
We now have 

=2npn-2(n+1)Pn+l+8 L (r,s,t)d+8 L Pr'P' 
n+1 n+l 

+ 12 L (r,s,t). (5) 
n+l 

for n> 1, the summations being taken over all the 
generalized figure-eights of order n+ 1 on the lattice. 

The result (5), which we shall refer to as the "chain 
counting" theorem, was first discovered empirically in 
the following way. The successive chains were expressed 
in terms of the lattice constants pnx, defined by Domb 
and Sykes,7 for a general lattice. For convenience of 
reference, a table of the pnx used here is giveh m 
Appendix I. 

7 C. Domb and M. F. Sykes, Phil. Mag. 2, 733 (1957). 

It was found that 

Co= 1 

cl=u+1 

c2=u(u+1) 

Ca=u2(u+1)-6pa 

C4=U3(U+ 1)-6p3(2u-1)-8p4 

C5=U4(U+1)-6Pa(3u2- 2u)-8p4(2u-1) 
-10P.+ 12p6a (6) 

C6= U S( 0'+ 1) - 6P3( 40'3- 30'2) - 8P4(3u2- 20') 
-10P5(2u-1)-12P6+ 12p .. (2u)+12P6a 

+ 12P6b+8P6< 

C7= 0'6(0'+ 1) -6Pa(5uC 4ua)+8p4(4ua-3u2) 
-10P5(3uL 2u)-12p6(2u-1)-14p7 
+ 12p6a (30'2) + 12P6a(2u) + 12P6b(2u )+8P6c(2u) 

+ 12p7a+ 12P7b+ 12P7f+8p7d+8p7e. 

On the right-hand side of (6) each pnz occurs in Cr+. 
multiplied by a polynomial in u,1/;nz8 (u) say. It is easily 
seen that these polynomials satisfy the relation 

(7) 

and it therefore only remains to discover how each 
lattice constant appears in (6) for the first time. An 
examination of the linear graphs corresponding to the 
lattice constants that occur in (6) together with those 
that occur in Cs, C9, and CIO leads to the rules contained 
in (5). 

The chain counting theorem enables the number of 
self-avoiding walks of n steps to be calculated recur­
sively, the number of generalized figure-eights and 
polygons of order n being the only data required. It 
is of great practical use since for a given n there are 
very many fewer such structures than there are walks. 
With its aid the chain generating function C(x) defined 
by Fisher and Sykes,a 

(8) 

has been expanded on the simple quadratic lattice up 
"to the term in XiS as 

C(x) = 1 +4x+ 12x2+36x3+ 100x4+284x6+ 780x6 

+2172x7+5916xs+16268x9+44100xlO 
+ 120 292xu+324 932x12+881 500x13 

+2374 444x14+6 416 596x16+17 245332x16 

+46466 676x17+ 124658 732x1S+ . . '. (9) 

On this lattice the counting of the dumbbells required 
for the last two terms of (9) is laborious, and the 
author has been greatly assisted by Mr. B. J. Hiley 
in deriving and checking the data. For the three­
dimensional simple cubic lattice, C(x) has been ex­
panded up to the term in xu, and this series, together 
with those derived for the honeycomb, triangular, 
bcc, and fcc lattices, is given in Appendix II. 

54 M. F. SYKES 

and it is therefore necessary to distinguish between 
the cases r~1 and r=l. Any dumbbell (r,s,t)d for which 
r~ t will be formed twice in the synthesis of T n-T+l.T in 
accordance with the scheme 

and twice in the synthesis of T n-I+l,t. If r= t the 
dumbbell will be formed four times in the synthesis of 
T ,,-T+1.T in accordance with the scheme 

0s0 
T t 

0s0 
T t 

0s0. 
T t 

The contribution to L F r ,n-T+1 is therefore always 
4(r,s,t)d. Any star figure-eight (r,s,t)8 will occur in the 
synthesis of T 1>-T-8+1,r+8, T n-r-l+l,r+l, T n-8-1+1,8+1, if 
r, s, t are all different, and will be formed twice in each 
case to give a total contribution of 6(r,s,t)8' If any two 
of r, s, t are equal, r= s say, then the constant will 
occur twice in T n-r-8+1.r+8 and four times in T n-r-l+l,r+1 
in accordance with the scheme 

Finally, if r=s=t, the constant will be formed SIX 

times in the synthesis of T ,,-2r+l,2r. 
We now have 

=2npn-2(n+1)Pn+l+8 L (r,s,t)d+8 L Pr'P' 
n+1 n+l 

+ 12 L (r,s,t). (5) 
n+l 

for n> 1, the summations being taken over all the 
generalized figure-eights of order n+ 1 on the lattice. 

The result (5), which we shall refer to as the "chain 
counting" theorem, was first discovered empirically in 
the following way. The successive chains were expressed 
in terms of the lattice constants pnx, defined by Domb 
and Sykes,7 for a general lattice. For convenience of 
reference, a table of the pnx used here is giveh m 
Appendix I. 

7 C. Domb and M. F. Sykes, Phil. Mag. 2, 733 (1957). 

It was found that 

Co= 1 

cl=u+1 

c2=u(u+1) 

Ca=u2(u+1)-6pa 

C4=U3(U+ 1)-6p3(2u-1)-8p4 

C5=U4(U+1)-6Pa(3u2- 2u)-8p4(2u-1) 
-10P.+ 12p6a (6) 

C6= U S( 0'+ 1) - 6P3( 40'3- 30'2) - 8P4(3u2- 20') 
-10P5(2u-1)-12P6+ 12p .. (2u)+12P6a 

+ 12P6b+8P6< 

C7= 0'6(0'+ 1) -6Pa(5uC 4ua)+8p4(4ua-3u2) 
-10P5(3uL 2u)-12p6(2u-1)-14p7 
+ 12p6a (30'2) + 12P6a(2u) + 12P6b(2u )+8P6c(2u) 

+ 12p7a+ 12P7b+ 12P7f+8p7d+8p7e. 

On the right-hand side of (6) each pnz occurs in Cr+. 
multiplied by a polynomial in u,1/;nz8 (u) say. It is easily 
seen that these polynomials satisfy the relation 

(7) 

and it therefore only remains to discover how each 
lattice constant appears in (6) for the first time. An 
examination of the linear graphs corresponding to the 
lattice constants that occur in (6) together with those 
that occur in Cs, C9, and CIO leads to the rules contained 
in (5). 

The chain counting theorem enables the number of 
self-avoiding walks of n steps to be calculated recur­
sively, the number of generalized figure-eights and 
polygons of order n being the only data required. It 
is of great practical use since for a given n there are 
very many fewer such structures than there are walks. 
With its aid the chain generating function C(x) defined 
by Fisher and Sykes,a 

(8) 

has been expanded on the simple quadratic lattice up 
"to the term in XiS as 

C(x) = 1 +4x+ 12x2+36x3+ 100x4+284x6+ 780x6 

+2172x7+5916xs+16268x9+44100xlO 
+ 120 292xu+324 932x12+881 500x13 

+2374 444x14+6 416 596x16+17 245332x16 

+46466 676x17+ 124658 732x1S+ . . '. (9) 

On this lattice the counting of the dumbbells required 
for the last two terms of (9) is laborious, and the 
author has been greatly assisted by Mr. B. J. Hiley 
in deriving and checking the data. For the three­
dimensional simple cubic lattice, C(x) has been ex­
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4. HIGH-TEMPERATURE ZERO-FIELD 
SUSCEPTIBILITY EXPANSION 

Oguchil has shown that the reduced susceptibility 
per spin of the Ising model XCv), defined as kTXo/m2, 
may be expanded in powers of v=tanhK,8 

X(V)=LrarV r
, 

where ao = 1 and ar is twice the term linear in N in the 
total number of ways of placing a graph of r lines on a 
lattice (of N sites) such that all but two of the vertices 
are the meet of an even number of lines. We may 
conveniently refer to such graphs as magnetic, the 
two vertices which are the meet of an odd number of 
lines being referred to as the magnetic vertices. The 
high-temperature counting problem presented by the 
susceptibility is that of evaluating the ar for a given 
lattice. Some examples of magnetic configurations of 
order eight are given in Fig. 4. (The order of a con­
figuration being the number of lines in the graph and 
hence the power of v to which it contributes. We shall 
refer to the number of lines that meet at a vertex as 
the order of that vertex.) Such configurations are 
numerous, and the counting of the large number of 
open types that occur (that is, configurations with at 
least one first-order vertex) rapidly becomes laborious 
and liable to error. Oguchi, who first derived series of 
this type, did not examine the counting problem in 
detail, although he remarked on its connection with 
the excluded volume problem. Domb and Sykes7 give 
expressions for the first seven ar in terms of lattice 
constants. These expressions are obtained by straight­
forward enumeration and reduction following the 
methods described by Domb.4 

The coefficients (6) of the chain generating function 
possess the property 

c,,-2uc"_1+rr2cn _2=linear sum lattice constants 
of order n (n~3). (lO) 

It was remarked by Sykes9 that the corresponding ar of 
the susceptibility expansion of the Ising model appear 
to satisfy the property 

an - 2uan_l+u2an_2= linear sum of lattice constants 
of order n or less (n~3). (11) 

We have therefore sought to discover the general form 
of the right-hand side of (11) that would correspond 
to (5). We write 

00 

xCv) = (l-uv)-2[1- (u-l)v-uv2+ L drvr], (12) 
3 

8 Note. Here xo is the initial susceptibility per spin, k is 
Boltzmann's constant, m the moment of a single spin, K =J IkT, 
and J is the interaction energy between parallel spins. For 
details of the derivation of this result, reference should be made 
to the original paper of Oguchi and also to the review article 
by Domb.· 

• M. F. Sykes, thesis, University of Oxford, 1956. 

CY 
(a) (b) 

(e) (d) 

FIG. 4. Examples of eighth-order magnetic configurations: 
(a) connected open; (b) connected closed; (c) separated open­
(d) separated closed. ' 

the factor (l-uv)-2 corresponding to the left-hand 
side of (11), and the first five sums are found to be 

da= -6pa 

d4= -8P4 

d.= 6pa-lOp.+8pSa 

d6= 6Pa+8P4-12P6+28PSa+8(P6a+P6b+P6c) 

d7= 10p.-14P7+36pSa+ 16P6a+30p6b+ 16p6c 

+8(P7a+P7b+hc+P7d+P7.+P7/)+44P7u' 

(13) 

There seems no obvious way of guessing the general 
form of the dT in (13). The most irregular behavior is 
noticed for the more complicated no-field1o lattice 
constants such as P7u. These constants also occur in 
the expansion of the partition function in the absence 
of an applied field, and we therefore seek a combination 
of these two expansions to simplify (13). The presence 
of terms of the type 2sp. suggests a differentiation of 
the term p.v· with respect to v, and this corresponds to 
expanding the configurational energy. We therefore 
select the function 

2vU(v) = Lr brv', 

where U(v) is the reduced energy [U(O)=O, U(I) =q/2] 
for which 

bo=O 

b1=O 

b2=a+l 

ba=6pa 

b4=8P4 

b.= -6pa+l0p5 

b6= -6Pa-8p4+12P6-12pSa 

b7 = -lOp.+ 14P7- 28pSa -14P6b - 28p7u' 

(14) 

We now form the quantity (b.+ds) for s=3 to s= 7 

10 Note. A no-field lattice constant is one all of whose vertices 
are even. They contribute to the partition function in the absence 
of an applied field (Domb4). 
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c,,-2uc"_1+rr2cn _2=linear sum lattice constants 
of order n (n~3). (lO) 

It was remarked by Sykes9 that the corresponding ar of 
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to satisfy the property 

an - 2uan_l+u2an_2= linear sum of lattice constants 
of order n or less (n~3). (11) 

We have therefore sought to discover the general form 
of the right-hand side of (11) that would correspond 
to (5). We write 

00 

xCv) = (l-uv)-2[1- (u-l)v-uv2+ L drvr], (12) 
3 

8 Note. Here xo is the initial susceptibility per spin, k is 
Boltzmann's constant, m the moment of a single spin, K =J IkT, 
and J is the interaction energy between parallel spins. For 
details of the derivation of this result, reference should be made 
to the original paper of Oguchi and also to the review article 
by Domb.· 

• M. F. Sykes, thesis, University of Oxford, 1956. 
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(a) (b) 

(e) (d) 

FIG. 4. Examples of eighth-order magnetic configurations: 
(a) connected open; (b) connected closed; (c) separated open­
(d) separated closed. ' 

the factor (l-uv)-2 corresponding to the left-hand 
side of (11), and the first five sums are found to be 

da= -6pa 

d4= -8P4 

d.= 6pa-lOp.+8pSa 

d6= 6Pa+8P4-12P6+28PSa+8(P6a+P6b+P6c) 

d7= 10p.-14P7+36pSa+ 16P6a+30p6b+ 16p6c 

+8(P7a+P7b+hc+P7d+P7.+P7/)+44P7u' 

(13) 

There seems no obvious way of guessing the general 
form of the dT in (13). The most irregular behavior is 
noticed for the more complicated no-field1o lattice 
constants such as P7u. These constants also occur in 
the expansion of the partition function in the absence 
of an applied field, and we therefore seek a combination 
of these two expansions to simplify (13). The presence 
of terms of the type 2sp. suggests a differentiation of 
the term p.v· with respect to v, and this corresponds to 
expanding the configurational energy. We therefore 
select the function 

2vU(v) = Lr brv', 

where U(v) is the reduced energy [U(O)=O, U(I) =q/2] 
for which 

bo=O 

b1=O 

b2=a+l 

ba=6pa 

b4=8P4 

b.= -6pa+l0p5 

b6= -6Pa-8p4+12P6-12pSa 

b7 = -lOp.+ 14P7- 28pSa -14P6b - 28p7u' 

(14) 

We now form the quantity (b.+ds) for s=3 to s= 7 

10 Note. A no-field lattice constant is one all of whose vertices 
are even. They contribute to the partition function in the absence 
of an applied field (Domb4). 
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and obtain 

ba+da=O 

b4+d4=0 

b5+ds=8pr,a 

b6+d6= 16psG+8(P6a+P6b+Pac) 

b7+d7=8Pr,a+16(P6a+P6b+Pac)+8(p7,,+P7b+P7c 
+P7d+ P7.+ P71) + 16P7u· 

(15) 

Equations (15) are remarkable in that all the 
polygons have canceled and the coefficients of the 
remaining lattice constants are all simple multiples of 
eight. Further, we notice that the coefficients gr defined 
by 

8 'Ergrvr=(1+v)-2 'E. (b.+d.)v· (16) 

will satisfy a recurrence relation of type (10) in place 
of (11). 

We have now found empirically a rearrangement of 
the susceptibility expansion (12) which makes each 
new coefficient, up to n= 7, depend on a function of 
the configurational energy and a linear sum of lattice 
constants (gn) which satisfies the three conditions 

(a) only lattice constants of order n occur in gn; 
(b) only no-field and magnetic lattice constants 

occur; (17) 
(c) every topologically possible magnetic lattice 

constant of order n appears with a positive 
nonzero coefficient. 

When the rearrangement is made for the eighth term 
for which 

ds= -16pg+ 12P6+8P7-6p.-28pr,a+S6PGa 
+24P6b+8P6c-48P6d+32P7G+32P7b+32P7c 
+ 16P7d+ 16p'e+ 16P7f+8P7o+8 (Paa+ P6b+psc 
+~+~+~+~+~+~+pg~pg~~ 

+6psr+6ps.), (18) 

it is found that some constants of order less than 
eight remain in gs and that this linear sum also contains 
lattice constants with more than two odd vertices, for 
example, 96P6d (tetrahedron). 

Since the simplification already obtained is unlikely 
to be completely fortuitous, we now seek a modification 
of the conditions (17) which would enable the eighth 
term to be included. This can be achieved as follows. 
We now relax the condition that lattice constants are 
connected configurations. Thus we must regard con­
figurations such as 

symbol [Pa,pa] 

and (19) 

symbol [pr,a,pa] 

as lattice constants and denote the coefficient of N in 
the number of such configurations by [Pa,pa] and 
[pr,a,pa], respectively. With this extended definition 
we can satisfy all the conditions (17) by making the 
substitution 

8[pr,a,pa]= 8( - PSI-p&m- PSq-3P7g 
- 2P7c-12PGd- 2pr,a) (20) 

in (18). Then, on adding 

bs= + 16ps-' 12P6-8p4+6P3+ 12P5a-48PGa-16P6b 
-48P6d-16p7a-16p7b-32p7c-32Psr-32p~., (21) 

all the polygons cancel, and we obtain 

bs+d8= 8 (P6a+p6b+Pac) + 16 (P7a+p7b+ P7c+ P7d 
+P7.+P71)+32P7g+8(paa+Psb+PSc+PGd 
+PS.+pSf+PSg+ps,,+pSi+PSk+2pgl+psm 

+PsP+pSq+2pgr+ 2Ps.+[P5a,Pa]). (22) 

The right-hand side of (22) now follows the pattern of 
(15), and after application of the recurrence relation 
(16) the corresponding gs will satisfy the conditions (17). 

5. SUSCEPTIBILITY COUNTING THEOREM 

We can now state a hypothetical high-temperature 
counting theorem for the susceptibility expansion as 
follows. The expansion may be written 

xCv) = (1-uv)-2[1- (u-1)v+v2-2vU(v) 

00 

+8(1 +V)2 'E grvrJ, (23} 

where gr is a linear sum of lattice constants, including 
separated lattice constants, satisfying the conditions 
(17). We write this linear sum 

(24) 

and call each Wrx the counting weight of the associated 
configuration. 

To complete the enunciation of the theorem we 
require an expression for the counting weight of a 
lattice constant. In the chain counting theorem (5) 
the contribution of a lattice constant depends on its 
topology, the distinction between a dumbbell and a 
star being one of connectivityll that cannot be expressed 
in terms of the order of the vertices alone. From the 
nature of the Ising problem it seems intuitively un­
likely that such a rule could obtain, and if rule there is, 
we should expect it to depend on the order of the 
vertices alone. 

The counting weights of all the lattice constants of 
order eight or less are obtained by writing the first 
eight terms of the susceptibility expansion in the 

11 Because of this it seems likely that an exact solution of the­
excluded volume problem would be more difficult than an exact 
solution of the Ising problem in the presence of an applied field. 
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form (23). For the eighth term there are 61 topologically 
distinct magnetic configurations required by Oguchi's 
method. To obtain the general coefficient for higher 
order by direct enumeration and counting is laborious. 
We have therefore determined as many higher-order 
counting weights as possible by choosing particular 
lattices whose structure excludes many of the con­
figurations that must be included in the general 
coefficient. By carrying through Oguchi's method all 
those ninth-order constants that can occur on a loose­
packed lattice have been weighted. From an examina­
tion of the results obtained we postulate the following 
rules for the counting weight of a lattice constant. 

(a) No-field lattice constants: 

any number of second-order vertices and 

1 fourth-order vertex weight= 1 

2 fourth-order vertices weight = 2 

3 fourth-order vertices weight = 3 
(25) 

1 sixth-order vertex weight = 3 

(b) Magnetic lattice constantsl2 : 

2 third-order magnetic vertices 

1 third- and 1 fifth-order magnetic 
vertex 

weight = 1 

weight = 2 

The direct proof of these rules for the most general 
case of a lattice of coordination number q along the 
lines of the corresponding long-chain counting theorem 
would seem to be very involved and we have not 
achieved it. For the particular case of q=3, however, 
a considerable simplification results and the proof 
although long has been carried through. It proceeds on 
the same lines as that of the chain counting theorem. 
In view of the complexity of a direct treatment of the 
general counting problem we shall not attempt to 
prove the theorem for q>3 but shall regard it as 
proved for q=3 and hypothetical for q>3. 

The validity of the rules (a) and (b) has been 
tested by evaluating the counting weights of higher­
order lattice constants. The special methods employed 
to do this together with an outline of the ways in which 
the rules were deduced is given in Appendix III. A 
further verification is afforded by the use of the exact 
susceptibilities of finite clusters of spins (some examples 
are given in Appendix IV) and also by a study of the 
susceptibility expansions of the honeycomb, triangular, 
and simple quadratic lattices. For the honeycomb 
lattice q=3, and for this case the susceptibility count­
ing theorem has been established rigorously. From the 
susceptibility expansion of the honeycomb lattice we 
may derive that of the triangular lattice by trans-

12 We shall not quote any rules for magnetic lattice constants 
with two fifth-order vertices or with any magnetic vertex of 
order greater than five. They can be investigated by the methods 
of Appendixes III and IV. 

formation,13 and this enables us to test the counting 
theorem for q=6. For the simple quadratic lattice the 
theorem can be tested for q=4 by deriving the suscepti­
bility expansion by an independent method. The 
theorem can be used to extend the susceptibility 
expansions of three-dimensional lattices, but we shall 
not quote any new results here as the calculations 
have not yet been finally checked. 

6. SUSCEPTmILITY EXPANSIONS OF THE 
HONEYCOMB AND TRIANGULAR 

LATTICES 

The susceptibility expansions for the honeycomb 
and triangular lattices are conveniently considered 
together as they are closely related to one another. 
The precise form of this relationship has been given 
by Fisher.13 If XH(w) denotes the reduced susceptibility 
of the honeycomb lattice and XT(V) denotes the re­
duced susceptibility of the triangular lattice, then 

XT(v) = ![XH(W)+XH( -w)] 
for W= v(l +v)!l +v3• (26) 

Equation (26) relates the susceptibility of the 
triangular lattice to the mean of the ferromagnetic and 
antiferromagnetic susceptibilities of the honeycomb 
at a different temperature. For our present purpose we 
observe that from the high-temperature expansion for 
the susceptibility of the honeycomb lattice 

XH(w) = 1 +3w+6w2+12w3+24w4+48w5+90v6+, (27) 

the corresponding series for the triangular lattice may 
be obtained by setting the odd coefficients equal to 
zero and substituting 

W= v(l +v)/l +v3= V+V2 _V4+V7+ . . '. (28) 

The counting theorem on the honeycomb as a result 
of the coordination number 3 and the rules (25) is 
extremely simple. The only possible no-field con­
figurations are polygons or groups of separated 
polygons, and these all have zero counting weight. 
The only possible closed magnetic configurations fall 
into two classes: 

(I) Dumbbells or dumbbells associated with one or 
more separated polygons. 

(II) Figure-eight stars or figure-eight stars associated 
with one or more separated polygons. 

Both these classes will have counting weight 1. The 
counting of these configurations on the honeycomb 
lattice is straightforward and does not become very 
laborious until n=23, while the direct method of 
Oguchi becomes involved after n= 13. 

As an example for the 19th term there are only 
eight cases to be considered and we quote these in 
Table I. 

Proceeding in this way the first 24 gr have been 

13 M. E. Fisher, Phys. Rev. 113,969 (1959). 
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13 M. E. Fisher, Phys. Rev. 113,969 (1959). 
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TABLE 1. Contributions to gig on honeycomb lattice. 

Class I 

Class II 

(6,7,6k-69 
(6,3,10)d=42 
(6,1,12)d=9 

[(6,1,6)d,P6]= -18 

(3,3,13).=6 
(3,7,9).=6 

(5,1,13).=39 
(1,9,9),= 13t 

evaluated. We find 

24 

Total 166! 

1: grV" = !Vll+!V13+6v14+ lSv15+ 12v16+30V17 

+67v18+ 166!V19+204V20+421!V21 

+1017v22+1837!v23+2613v24, (29) 

The expansion (29) together with that for the energy 
of the honeycomb lattice, which is known from the 
work of Houtappel,14 suffices to deduce the first 24 
terms of the corresponding susceptibility expansion as 

XH(W) = 1+3w+6w2+12WJ+24w4+48w5+9Ow6 

+ 168w7 +318w8+600w9+ 1098w10 

+ 2004wll+3696w12+6792w13+ 12 27(}LV14 

+2214OwI5+40 224w16+72 888w17 

+130 65OwI8+234 012w19+421176u,20 

+ 7 56 624w21+ 1 348 998w22 + 2 403 84Ow23 
+4299 018w24+ .. '. (30) 

From (30) and (26) we can derive the susceptibility 
expansion for the triangular lattice up to the term in 
in VI2 as 

XT(V) = 1 +6v+30v2+ 138v3+606v4+ 2586v· 
+ 10 818v6+44 574v7+ 181 542v8+732 678v9 

+ 2 935 218v1o+ 11 687 202vll 

+46296 210V12+. , " (31) 

From (31) the first 12 gr for the triangular lattice have 
been deduced by manipulation into the form (23). 
The configurational energy of the triangular lattice is 
known from the work of Houtappel,14 but as his paper 
contains a typographical error we quote the corrected 
expression in terms of the variable v: 

[
1-3V-3v2+v3 2 ] 

-2vU(v)= -K(k)-l (1+v2), 

(1-V)3 11" 
(32) 

where K(k) is the complete elliptic integral of the first 
kind and 

,. R. M. F. Houtappel, Physica 16, 425 (1950). 

TABLE II. Contributions to gg and glo on triangular lattice. 

gg giG 

No-field: one fourth-order vertex 108 -54 
two fourth-order vertices 48 261 
three fourth-order vertices 2 12 
one sixth-order vertex 2 6 

Magnetic: two third-order vertices 2547 11 787 
one fifth-order, one third- 54 252 

order vertex 
Total contribution: 2871 12813 

From (32), we derive 

2vU (v) = 6v2+ 12v3+ 24v4+48v5+ 108v6+ 276v7 

+756v8+216Ov9+6372vlo+19284vll 

wt 

1 
2 
3 
3 

1 
2 

+59 568v12 .. '. (33) 

On using (33) and (31) in conjunction with (23), we 
obtain for the. triangular lattice 

12 

1: gr'vr = 3v5+21v6+ 12Ov7+615v8+2871v9 

7=3 

In view of the complexity of the counting problem 
on the triangular lattice, the series (31) is most easily 
obtained by transformation of the honeycomb series 
(30). The validity of the hypothetical rules (25) for 
q=6 has been tested by deriving the terms up to VIO 

of (34) directly. 
In the example given for the honeycomb lattice 

(gI9) , the terms contributing have been grouped 
topologically. For the purpose of enumeration and 
counting this classification is convenient. For our 
present purpose, however, a topological description is 
redundant except in so far as it provides information 
about the vertex distribution. To verify the rules (25) 
for (34), it is sufficient to observe that all possible 
dosed no-field and magnetic configurations of up to 
10 lines on. the triangular lattice fall into six groups 
summarized in Table II with their respective occur­
rences for n= 9 and n= 10, Each entry in Table II 
corresponds to a variety of topologies. For example, 
to obtain the number of 10th-order no-field con­
figurations with one fourth-order vertex, we require 
(in the notation of Sec. 2) 

P1'ps=540 

P6'P4=276 

P5'P5= 108 

[ps' pa, P4]= -312 

[pa, Pa' P4]= -666 

total -54. 

The fact that gg and glO obtained in this way agree 
with those transformed from (30) provides a veri­
fication of the rules (25). The series (30) can be used 
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+ 7 56 624w21+ 1 348 998w22 + 2 403 84Ow23 
+4299 018w24+ .. '. (30) 
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known from the work of Houtappel,14 but as his paper 
contains a typographical error we quote the corrected 
expression in terms of the variable v: 

[
1-3V-3v2+v3 2 ] 

-2vU(v)= -K(k)-l (1+v2), 

(1-V)3 11" 
(32) 

where K(k) is the complete elliptic integral of the first 
kind and 

,. R. M. F. Houtappel, Physica 16, 425 (1950). 

TABLE II. Contributions to gg and glo on triangular lattice. 

gg giG 

No-field: one fourth-order vertex 108 -54 
two fourth-order vertices 48 261 
three fourth-order vertices 2 12 
one sixth-order vertex 2 6 

Magnetic: two third-order vertices 2547 11 787 
one fifth-order, one third- 54 252 

order vertex 
Total contribution: 2871 12813 

From (32), we derive 

2vU (v) = 6v2+ 12v3+ 24v4+48v5+ 108v6+ 276v7 

+756v8+216Ov9+6372vlo+19284vll 

wt 

1 
2 
3 
3 

1 
2 

+59 568v12 .. '. (33) 

On using (33) and (31) in conjunction with (23), we 
obtain for the. triangular lattice 

12 

1: gr'vr = 3v5+21v6+ 12Ov7+615v8+2871v9 

7=3 

In view of the complexity of the counting problem 
on the triangular lattice, the series (31) is most easily 
obtained by transformation of the honeycomb series 
(30). The validity of the hypothetical rules (25) for 
q=6 has been tested by deriving the terms up to VIO 

of (34) directly. 
In the example given for the honeycomb lattice 

(gI9) , the terms contributing have been grouped 
topologically. For the purpose of enumeration and 
counting this classification is convenient. For our 
present purpose, however, a topological description is 
redundant except in so far as it provides information 
about the vertex distribution. To verify the rules (25) 
for (34), it is sufficient to observe that all possible 
dosed no-field and magnetic configurations of up to 
10 lines on. the triangular lattice fall into six groups 
summarized in Table II with their respective occur­
rences for n= 9 and n= 10, Each entry in Table II 
corresponds to a variety of topologies. For example, 
to obtain the number of 10th-order no-field con­
figurations with one fourth-order vertex, we require 
(in the notation of Sec. 2) 
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P6'P4=276 
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[ps' pa, P4]= -312 

[pa, Pa' P4]= -666 

total -54. 

The fact that gg and glO obtained in this way agree 
with those transformed from (30) provides a veri­
fication of the rules (25). The series (30) can be used 
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to evaluate the antiferromagnetic susceptibility of the pansion 
triangular lattice over the whole temperature range 

(39) v=o to v= -1.13 This application is reserved for a 
separate paper. 

7. SUSCEPTIBILITY EXPANSION FOR THE 
SIMPLE QUADRATIC LATTICE 

The first nine terms of the expansion for the simple 
quadratic lattice have been derived by Brooks and 
Dombl5 using a matrix method. They find 

xCv) = 1 +4v+ 12v2+36v3+ 100v4+ 276v5+ 740v6 

+1972v7+5172v8+13492v9+ .... (35) 

With the use of the counting theorem we have derived 
the six further terms: 

+34 876v10+89 764vll+229 628v12+S85 508v13 

+ 1486 308v14+3 763 460vI5 + .. '. (36) 

Since for the simple quadratic lattice q=4, all 
magnetic configurations will have two third-order 
vertices, and all no-field configurations will be made 
up of second- and fourth-order vertices. As a partial 
check on (36) we have derived the coefficients of vlO 

and vll by an independent method. The configurational 
partition function for the simple quadratic lattice may 
be expanded at low temperaturesl6 as a double series 
in the variables JL=exp( -2mH/ kT), u=exp( -4J /kT) 

A(/oL,U)=L. j.(u)/oLs, (37) 

where j.(u) is a finite polynomial in u. The values of 
/leu) to j8(U) obtained by Dombl6 and Brooks and 
Dombl5 are given by Domb and SykesP By enumera­
tion and counting of low-temperature configurations, 
two further polynomials have been added to (37). 
The details of this derivation will be given in a separate 
paper, but we quote the result: 

j9(U) = u 6+ 72u7 +546u8-1222u9-18 964u10 

-694ull+649 535u12 _2 932 576ul3 

+6311 938ulC 7804 442u15+5 685 542ul6 

- 2 278 538ul7 +388 802u18, (38a) 

/lO(u) =30u7+462u8+ 1230u9-14 444ulO 

- 65 862ull+ 262 160u12+ 2 228 858ul3 

-16244 768u14+47 256 224ul5 

-78352 726uI6+80 010 676ul7 

- 50 032 548u18+ 17 649 91Oul9 

-2699202u20. (38b) 

From (37) the corresponding high-temperature ex-

16 ]. E. Brooks and C. Domb, Proc. Roy. Soc. (London) A207, 
343 (1951). 

I. C. Domb, Proc. Roy. Soc. (London) A199, 199 (1949). 
17 C. Domb and M. F. Sykes, Proc. Roy. Soc. (London) A235, 

247 (1956); (a) Note. The two earlier papers'",. contain misprints. 

where the CPr(JL) are symmetric polynomials in 10', may 
be derived by manipulation.I6 The results (38) enable 
us to derive the first 11 polynomials CPr(/oL), and following 
the method of Brooks and Dombl5 the susceptibility 
is obtained as a series in powers of (l-u) which, after 
manipulation, yields (35) and the two extra terms 
34 876v10+89 764vl1 , confirming (36). 

For a study of the ferromagnetic susceptibility of the 
simple quadratic lattice, the first nine terms of xCv), 
(35), are adequate.18 For the antiferromagnetic suscep­
tibility the further terms (36) are required since the 
coefficients then alternate in sign and the extrapolation 
is a more delicate one. The antiferromagnetic suscepti­
bility is to be discussed in a forthcoming paper. 

8. CONCLUSIONS 

A theorem has been derived that makes the exact 
enumeration of chains en on a lattice depend on a 
restricted class of closed graphs (generalized figure­
eights), and this enables a substantial number of terms 
to be evaluated. A corresponding theorem has been 
developed empirically (and proved rigorously for the 
honeycomb lattice) for the susceptibility, and it is 
found that we may write 

x(v)= (1-uv)-2[1- (u-l)v+vL 2vU(v) 

+8(I+v)2 Lr grvr] , (40) 

where the gr depend on the number of a restricted 
class of closed graphs. The enumeration problem of 
Oguchi has been transformed in such a way that only 
closed graphs with at most two odd vertices contribute. 

The coefficients aT are all positive and the series 
xCv) converges up to the transition point for J>O. 
This occurs at the ferromagnetic Curie temperature 
T e, and if VI is the corresponding critical value of v, 
then VI= tanhJ /kTe• For negative interaction energies 
the series converges for I v I ::; VI. The successive aT 
form a fairly smooth sequence, but for the antiferro­
magnetic susceptibility the alternation of sign that 
corresponds to a negative interaction energy makes 
the problem of summation delicate. While we have 
derived (40) and the expansions given here with a 
view to investigating the antiferromagnetic suscepti­
bility by extrapolation, we now observe that the 
susceptibility counting theorem admits of a more 
physical interpretation. 

The result (40) contains an unknown function G(v) 
defined by 

G(v)=8(1+v)2 LT gTVr. (41) 

If we neglect G(v), we obtain an approximation to the 
susceptibility, which we shall call the energetic suscep-

18 C. Domb and M. F. Sykes, Proc. Roy. Soc. (London) A240, 
214 (1957). 
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tibility (XE), which for plane lattices whose energy is 
known may be evaluated over the entire temperature 
range v = 0 to v = - 1. For a two-dimensional loose­
packed lattice such as the simple quadratic lattice, the 
energy in the region I v I "'v, behaves like19 

(42) 

where a and b are constants, and the energetic suscepti­
bility will therefore also have a singularity of this 
type.20 The conclusion that xCv) will have a singularity 
of type (42) at I v I = v, could of course, be nullified by 
the behavior of G(v). Sykes and Fisher20 rejected this 
contingency on numerical grounds, and the conjecture 
that the antiferromagnetic susceptibility has a singu­
larity analogous to that of the energy has subsequently 
been proved by Fisher21 for the simple quadratic lattice. 
This gives one considerable confidence that our inter­
pretation of (40) is correct and that the energy, which 
is determined by the first-order correlations between 
spins, plays a dominant role at temperatures above 
and III the neighborhood of the transition point. 
Further investigation shows that the function G(v), 
which we shall call the residual correlation function, 
is essentially a low-temperature function important 
only in the region ~-1 when, owing to the onset 
of complete (simple quadratic lattice) or partial 
(triangular lattice) order, the effect of higher-order 
correlations becomes larger. It is intended to make a 
more complete examination of this aspect of (40) in 
separate papers on the susceptibilities of the triangular 
and simple quadratic lattices. 
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APPENDIX 1. KEY TO THE LATTICE CONSTANTS 
USED IN THE TEXT 

Following the notation of Domb and Sykes,7 we 
associate each closed graph of n lines with a symbol 
pnx, the suffix x differentiating between graphs of the 
same order but different topology. The numerical 
value of N Pnx for a given lattice of N sites is the 
number of distinct ways the graph Pnx can be placed 
on the lattice. Values of the pnx for most simple lattices 
are given by Domb and Sykes7 for n:::; 7 and for n> 7 
by Domb.4 

19 L. Onsager, Phys. Rev. 65, 117 (1944). 
20 M. F. Sykes and M. E. Fisher, Phys. Rev. Letters 1, 321 

(1958). 
,] M. E. Fisher, Physica 25,521 (1959). 
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APPENDIX II. EXPANSIONS OF C(x) NOT 
QUOTED IN THE TEXT 

Honeycomb lattice: 

C(x)= 1 +3x+6x2+ 12x3+24:0+48x5+90x6+ 174x7 

+336x8+648x9+ 1218xl°+ 2328xll+4416x12 

+ 8388x13+ 15 780X14+ 29 892x15+56 268x16 

+ 106 200X17+ 199 350x18+375 504x19 

+704 304x20+ 1323 996x21+2 479 692x22 

+4654 464x23+8 710 212x24+ . ... 

Triangular lattice: 

C(x) = 1 +6x+30x2+ 138x3+618x4+2730x5+ 11 946x6 

+51 882x7+224130x8+964134x9+4 133 166x1o 

+ 17 668 938xll + .... 
Simple cubic lattice: 

C( x) = 1 +6x+30x2+ 150x3+ 726x4+3534x5+ 16 926x6 

+81390x7+387 966x8+1853 886x9 

+8809 878x10+41 933 286xll+ .... 

Body-centered cubic lattice: 

C(x) = 1 +8x+56x2+392x3+ 2648x4+ 17 960x· 
+ 120 056x6+804 824x7+5 351 720x8 

+35 652 680x9+ .... 
Face-centered cubic lattice: 

C(x) = 1 + 12x+ 132x2+ 1404x3+ 14700:0+ 152 532x5 

+1573 716x6+16172 148x7 

+ 165 697 044x8+ .... 
APPENDIX III. DETERMINATION OF 

COUNTING WEIGHTS 

For eight lines there are 61 topologically distinct 
magnetic configurations required by Oguchi's method. 
To obtain the general expression for higher-order 
coefficients is laborious, and we therefore seek to 
deduce the counting weights of more complex graphs 
by using special structures. For example, if we suppose 
that the lattice is a triangular cactus, made by joining 
together a fixed number of triangles at each point, 
then for the ninth term there are only 18 possible 
magnetic configurations, and by counting these we 
deduce the counting weights of 

~ ~3 and of 0 ~2. (At) 

By enumerating all the 10th-order magnetic terms we 
deduce the further counting weights 

rr~2 and ~ ~t. (A2) 

By examining the five special terms in the 12th-order 
coefficient we deduce that the counting weight of four 
triangles meeting at a point is 6. The argument may 
be generalized to show that the counting weight of r 
triangles meeting at a point is !r(r-l). 

If r triangles meet at a point the corresponding 
vertex is of order 2r=(J, say. But !r(r-l)=(J«(J-2)/8, 
and this quantity vanishes for all the other vertices 
of such a structure. We therefore postulate as a 
generalization that the counting weight of any no-field 
configuration will always be L (J«(J- 2)/8, where (J is 
the order of each vertex and the summation is taken 
over all the vertices. This rule will be found to be 
valid for all the results obtained so far. 'From it we 
may deduce that the counting weight of the pentagon 
with all bonds 

should be 5. This lattice constant will occur in the 
10th coefficient, but it is difficult to evaluate its 
contribution directly. That the result is correct will 
be shown in the Appendix IV. 

APPENDIX IV. USE OF FINITE CLUSTERS TO 
CHECK AND DERIVE COUNTING WEIGHTS 

A study of the exact partition functions of finite 
clusters provides a method of checking the counting 
weights so far derived and can be employed to derive 
new ones. As an illustration of the method we shall 
examine a cluster of five spins all connected to one 
another (close-packed cluster), which we denote by 
CP(5). The partition function in the absence of an 
applied field and the susceptibility of this cluster are 
easily derived by elementary methods, and we find 

(p.f.) = 32 (l-v2)-5(1 + 10v3+ 15v4 

+12v5+15v6+lOv7+vlO) (BI) 
and 

x (v) = (1 +6v2+6v3+6v4+v6)/(1-4v+ lOv2 

-IOv3+ lOvC 4v5+v6). (B2) 

By manipulation of (BI) and (B2), we may obtain 
xCv) in the form (23) and deduce that for this cluster 

00 

L grvr = 6v5+ 17 v6+ 16v7 

.-=3 

It is evident that if any rules of the type postulated 
in (25) are to hold, we must assume that if the counting 
weight of [pnz,pmy] is denoted by [Wn""Wmy]; then 

(B4) 
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-IOv3+ lOvC 4v5+v6). (B2) 

By manipulation of (BI) and (B2), we may obtain 
xCv) in the form (23) and deduce that for this cluster 

00 

L grvr = 6v5+ 17 v6+ 16v7 

.-=3 

It is evident that if any rules of the type postulated 
in (25) are to hold, we must assume that if the counting 
weight of [pnz,pmy] is denoted by [Wn""Wmy]; then 

(B4) 
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An examination of CP(S) now shows that the co­
efficient of v9 must be composed of four separated lattice 
constants 

[p6a,Pa]= -20 
[p6b,PS]= -120 

[P6c,PS]= -30 

[p6a,P4] = -90 

all of weight 1 and contributing -260 to g9, and one 
new constant 

of value 2 per site. If the coefficient of v9 is to be that 
in (B3), the counting weight of this constant must be 
taken as unity. 

In a like manner, for the coefficient of VIO there are 
six separated configurations with a total contribution 

of -487 and one connected configuration, the cluster 
itself 

of value i. If the coefficient of v10 is to be that in (B3), 
we require a contribution of + 1, and we deduce that 
the counting weight of the pentagon with all bonds is 5. 
This was originally predicted (Appendix III) by the 
result (A3). 

The rules (25) have been further verified by using 
the exact partition functions and susceptibilities of a 
close-packed cluster of seven spins and the octahedron 
as well as for a number of loose-packed clusters such as 

and 
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The present paper discusses the problem of making the most effective use of the coefficients of series 
expansions for the Ising model and excluded volume problem in estimating critical behavior. It is shown 
that aft:r initial irregularitie~ the coe~cients appear to settle down to a smooth asymptotic behavior. 
A~t:rnatlv~ methods o.f analysIs a~e consIdered for the provision of a steady series of approximations to the 
cntIcal pomt. Numencal conclusIOns are drawn for particular lattices for which additional terms have 
recently become available. 

1. INTRODUCTION 

IN a previous paperl it has been shown how, by the 
use of certain configuration counting theorems, 

substantial numbers of terms of series expansions can 
be derived for the susceptibility of the Ising model 
and for the excluded volume problem. It is the purpose 
of the present paper to undertake numerical analysis 
of the coefficients in such expansions, and to show that 
after initial irregularities they appear to settle down to 
a smooth asymptotic behavior which can be accurately 
estimated. 

The extrapolation of numerical data must usually 
proceed with care and caution. Fortunately, however, 
in the problems which we shall discuss some exact 
information is already available regarding the asympto­
tic form of the coefficients. Thus for the Ising model in 
two or three dimensions it is known from the work of 
Yang and Lee2 that a spontaneous magnetization exists 
below Te and hence that the initial susceptibility is 
infinite at the Curie point. Therefore, if we write this 
susceptibility in the form 

(1) 
W= tanh(J / kT), 

we know that an"'c/>(n)/we
n, where 

lim [c/>(n)]l/n = 1 (2) 
n->OO 

(We corresponds to the Curie point). 
It is natural to try to fit c/>(n) by an expression of 

the form 
(3) 

To assess whether this estimation IS 111 reasonable 
accord with the numerical data, it is convenient to 
plot ani an-l as a function of 1/ n. If expression (3) is 
valid, 

(4) 

and hence we should obtain a straight line whose 

1M. F. Sykes, J. Math. Phys. 2, 52 (1961), preceding paper. 
2 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952). 
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intersection with l/n=O. determines We, and whose 
slope determines g. 

The said method was used by Domb and Sykes3 who 
found that the numerical data then available fitted 
well to a formula of type (3). For two-dimensional 
lattices We is known exactly, and they were able to 
conjecture that g was equal to t and hence that the 
singularity ill the susceptibility at the Curie point was 
of the form (1- TjT)-7/4. 

This conjecture subsequently received rigorous sup­
port from the work of Fisher4 who determined the 
nature of the singularity by summing the correlations 
over all distances. The method was also applied by 
Domb and Sykes to three-dimensional models. 

The theorems of the previous paper enable several 
new terms to be added to the data used by Domb and 
Sykes, and the numerical analysis of the present paper 
enables the Curie point to be estimated with increased 
accuracy for three-dimensional models; the conjecture 
that for such models g is equal to t is further sub­
stantiated and the corresponding singularity in the 
susceptibility is of the form (1- Tc/T)-5/4.5 

In regard to the excluded volume problem, if Cn is 
the number of nonintersecting chains of n units, it is 
known rigorously from the work of Hammersley6 that 

(5) 

where c/>(n) satisfies the relation (2). An investigation 
determining p. and g from a relation of type (3) was 
undertaken by Fisher and Sykes. 7 Now that more 
numerical data are available, a more comprehensive 
investigation can be undertaken. 

The numerical method can also be applied to 
estimate the asymptotic form of the number of simple 
closed polygons pn on a crystal lattice, and to investigate 
the relation between the asymptotic forms of Cn and pn. 

• C. Domb and M. F. Sykes, Proc. Roy. Soc. (London) A240, 
214 (1957). 

4 M. E. Fisher, Physica 25, 521 (1959). 
• It may be noted that the comparison of coefficients for 

?iff~re~t values of spin given by Domb and Sykes' gave a strong 
mdicatlOn that the asymptotic forms of the susceptibility given 
here for two- and three-dimensional lattices are valid for all 
values of spin. 

oJ. M. Hammersley, Proc. Cambridge Phil. Soc. 53, 642 (1957). 
7 M. E. Fisher and M. F. Sykes, Phys. Rev. 114,45 (1959). 
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A more detailed treatment of these applications to the 
excluded volume problem will be given elsewhere,8 
but we shall make a comparison of the behavior of the 
chains en with that of the closely related an in Eq. (1). 

We give in an Appendix the susceptibility expansions 
for the 5imple cubic, body-centered cubic, and face­
centered cubic lattices in the form of Eq. (1). The 
other data employed in this paper are already presented 
elsew here. 1, 8 

2. SUSCEPTIBILITY EXPANSIONS FOR 
THE ISING MODEL 

High-temperature expansions for the initial suscep­
tibility of the Ising model. have been examined by 
Domb and Sykes3 who employed the development in 
inverse powers of the temperature. Asymptotically 
this is equivalent to the form (1) and it is computa­
tionally more convenient to employ the variable 
w= tanh (J I kT) for higher terms. That the available 
data fit well to a formula of type (4) is illustrated in 
Fig. I, where we plot anlqan-l against lin for the fcc 
and triangular lattices. (It is convenient for the 
purpose of comparison to take out the coordination 
number q as a factor, since this makes the maximum 
energy the same for both lattices.) It will be seen that 
for n>3 the plot is remarkably linear and for the 
triangular lattice the known exact limit is clearly 
indicated.9 Loose-packed lattices, such as the simple 
quadratic lattice, show a marked oscillation between 
"odd" and "even" ratios and, to estimate the limiting 
intercept at n= 00, Domb and Sykes used the linear 

1·0 r;;:::--------------, 

Fcc 

0·9 

---
08 

0·7 

EX ACT LlMI~':' 

1·0 0·5 Vn 0·0 
FIG. 1. Ising model. Successive ratios in the susceptihility 
expansions of the triangular and fcc lattices as functions of 1) n. 

i B. J. Hiley and M. F. Sykes (unpublished). 
9 The formula (4) is exact, if an is the nth coefficient in the 

expansion of (l-w)-a-l. The close fit, even for relatively small 
n, shows that such a function provides a good approximation for 
the susceptibility. 

0(11 

2:48 

2:46 

2·4+ 

2·42 

2-40 

HO 

A 

B 

------,"--- ". ----.------------.,,--------------,,---------~-~ -

5 6 7 8 , 10 II 11 13 14 15 16 17 18 11 

FIG. 2. Estimates for the critical parameters of the simple 
quadratic lattice by the method of linear projection as functions 
of n. (A) Ising problem. an = ![nan / an_l - (n - 2)an_d an_a]. 
Exact limit (a) = 2.4142. (B) Excluded volume problem. 
an=i[nCn/Cn_l- (n-2)cn_dcn_a]' Extrapolated limit (P) =2.6395. 

projections an of alternate pairs of points 

an=t[nanlar_l- (n-2)an_2Ian-3]. (6) 

While the distinction between odd and even ratios is 
not strictly necessary for close-packed lattices, the 
successive an still give smoother estimates for the 
critical temperature than the linear projections of 
adjacent points. In Fig. 2 (A) we plot the values of an 
for the simple quadratic lattice against n from n= 5 
to n= 15. With nine terms at their disposal, Domb 
and Sykes concluded that while the successive estimates 
were close to the true value [marked by the dashed 
line a in Fig. 2 (A) J, their behavior was somewhat 
irregular and made accurate extrapolation difficult. 
It can be seen from Fig. 2 (A) that a more regular 
behavior develops for values of n>9. 

However, to make the mo,st effective use of the new 
data for the provision of accurate estimates of the 
critical point, the method of linear projections, which 
depends on pairs of ratios, is not particularly suitable, 
since it magnifies small irregularities in the data. We 
have instead used the function 

f3n = na,j qan-l (n+ g) (7) 

against lin, where g is first estimated by the method 
of Fig. 1. By virtue of expression (4), f3" tends to 1/ qwc 
as n ~ 00, and it is a function of one ratio only. The 
additional factor (n+g) has the effect of straightening 
out the limit horizontally. Even if the estimate of g 
is in error, the limit of f3n is still 1/ qwc, but the approach 
to this limit is not quite horizontal. 
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In Fig. 3 (A) the successive f3n are plotted against 
l/n for the simple quadratic lattice with g=l The 
behavior of the f3n is smoother than that of the an and 
the last seven values are all within t% of the known 
exact limit (0.60355) which we shall denote by f3a. 
In Fig. 3(A) we have marked the value t% above 
this, which we denote by f3a+, and below this, which 
we denote by f3a-. The estimates improve steadily 
with increasing n. 

We have added two more coefficients to the series 
for the simple cubic lattice and in Fig. 3(B) and 
Fig. 3(C) we plot the corresponding f3n for the simple 
cubic and bcc lattices with g= t. It will be seen that 
the behavior is more regular and remarkably similar 
for these two lattices and we would suggest that the 
conjecture g = t is exact. We consider that the critical 
values for these two lattices which we denote by f3b 
and f3c, respectively, probably lie between the pairs of 
curves in Figs. 3(B) and 3(C), and we estimate 

1/ qwc = O. 7640±0.OOlO for the simple cubic, 
and (8) 

1/ qwc = 0.8004±0.OOlO for the bce. 

As remarked in the Introduction, care is needed in 
performing extrapolations of this kind and the limits 
of error quoted in Egs. (8) are based on the assumption 
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FIG. 3. Ising model. Estimation of critical temperatures by 
extrapolation of {3n. {3n =nanlqan_l (n+g). (A) Simple quadratic 
lattice; g=i. Exact limit {3.=O.6036. {3.+=1.005{3., {3.-=O.995{3a. 
(B) Simple cubic lattice; g=t. Extrapolated limit {3b=O.7640. 
{3b+= 1.005/'lb, iJb-=O.995{3b. (C) Body-centered cubic lattice; 
g=t. Extrapolated limit {3,=O.8004. {3,+=1.00S{3c, (3,-=O.995{3,. 

,.·5 

3.5 

3.0 u 
9G 

n-I 

0·2. O·l Yn 0.0 
FIG. 4. Excluded volume problem. Successive ratios in the 

expansions of C(x) and U(x) for the triangular lattice as functions 
of lin. 

that the observed trends persist for large n, an assump­
tion supported by Fig. 3(A). We have marked in Figs. 
3(B) and 3(C) the values t% above (f3b+, f3c+) and 
below (f3b-, f3c-) the estimated limits, and it would 
appear most unlikely that the true critical values lie 
outside this range. It would seem that the method 
provides an improving sequence of estimates for the 
critical temperature of a three-dimensional lattice. In 
a similar manner we estimate that for the fcc lattice 

l/qwc =0.8192±0.OOlO. (9) 

3. EXCLUDED VOLUME PROBLEM 

In the excluded volume problem series expansions 
closely related to the high-temperature Ising series 
arise.1O Two examples of these are the expan~ions of 
the generating functions C(x) and U(x) for non-self­
intersecting walks and simple closed polygons, re­
spectively. If Cn is the number of non-self-intersecting 
walks of n steps and Un the number of non-self­
intersecting returns to the origin after n steps on a 
lattice, then 

(10) 

n 

In Fig. 4 we plot the successive ratios en/ C n-l and 
U n/ Un-I for the triangular lattice against 1/ n. For 
C(x) we have used the first 11 coefficients given by 

10 For a precise statement of the underlying enumeration 
problems the reader is referred to the paper by Sykes! and a 
recent review article by Domb.l1 See also H. N. V. Temperley, 
Phys. Rev. 103, 1 (1956), and Fisher and Sykes.7 
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l/qwc =0.8192±0.OOlO. (9) 

3. EXCLUDED VOLUME PROBLEM 

In the excluded volume problem series expansions 
closely related to the high-temperature Ising series 
arise.1O Two examples of these are the expan~ions of 
the generating functions C(x) and U(x) for non-self­
intersecting walks and simple closed polygons, re­
spectively. If Cn is the number of non-self-intersecting 
walks of n steps and Un the number of non-self­
intersecting returns to the origin after n steps on a 
lattice, then 

(10) 

n 

In Fig. 4 we plot the successive ratios en/ C n-l and 
U n/ Un-I for the triangular lattice against 1/ n. For 
C(x) we have used the first 11 coefficients given by 

10 For a precise statement of the underlying enumeration 
problems the reader is referred to the paper by Sykes! and a 
recent review article by Domb.l1 See also H. N. V. Temperley, 
Phys. Rev. 103, 1 (1956), and Fisher and Sykes.7 
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Sykes and for U(x) the coefficients up to X l6 have been 
derived by using a method based on the existence of 
a dual lattice (Domb),u It will be seen that there is a 
striking similarity in the behavior of the ratios cn/ Cn-I 

and the ratios ani qan-l of the corresponding suscep­
tibility series for this lattice (Fig. 1). It is to be inferred 
from Fig. 4 that the two sequences cn/ Cn-- 1 and u n/ Un-l 
have a common limit, which we shall denote by /J, and 
that7 

(11) 

the values of g and h being determined by the slopes of 
the two lines in Fig. 4. It will be noticed that while the 
expansion of C(x) is well behaved for small values of 
n( "'5), the corresponding expansion of U (x) does not 
settle down to a smooth behavior until n> 10. This is 
not surprising in view of the comparative rarity of 
polygonal returns to the origin for small values of n. 

To investigate whether there is any closer analogy 
in behavior between the coefficients Cn of C(x) and an 
of Xo(w), we have calculated for the simple quadratic 
lattice the an corresponding to Eq. (6) for the function 
C(x); that is, 

an=![ncn/cn_l- (n-2)cn-dcn-a]. (12) 

The coefficients are available up to XiS and the result 
is given in Fig. 2(B). The value of /J (2.6395±O.001O) 
marked in the figure is that of Fisher and Sykes7 ; it is 
in very good agreement with that of Wall.12 Wall's 
estimate (2.6395±O.0015) is based on a Monte Carlo 
method in which very long walks are sampled (of the 
order of n= 8(0). The very close agreement of these 
two estimates, obtained by quite independent methods, 
provides confirmation of the proposed limit and also 

11 C. Domb, Advances in Phys. (to be published). 
12 F. T. Wall and J. J. Erpenbeck, J. Chern. Phys. 30, 634 (1959). 

of the asymptotic behavior [see Eq. (11)] on which 
the estimate from C(x) is based. 

It will be seen from Fig. 2(B) that a smooth behavior 
for the an sets in at about n= 9 as it does in the cor­
responding Ising series [Fig. 2 (An It is, therefore, 
to be hoped that conclusions drawn from these series 
will prove as reliable as those that have been drawn 
for the Ising problem. As in the Ising problem it is 
found that the corresponding (3,., are somewhat more 
regular, and Fisher and Sykes7 have suggested that 
for a plane lattice, g in expression (11) is exactly t. 

We have plotted in Fig. 5 the corresponding (3,., with 
this value for the simple quadratic lattice, that is 

(13) 

(It is convenient to take out a factor q in this problem 
also so as to facilitate comparison between different 
lattices.) The symmetry of Fig. 2 (B) is reflected in 
Fig. 5 where we have marked the values !% above 
and below the estimated limit by J.I.+ and J.I.-. We shall 
not examine these data in any further detail, since our 
primary object is to draw attention to the close 
similarity in the behavior of series expansions of the 
type X(w) and C(x). The excluded volume problem is 
to be the subject of a separate paper,s and we shall 
only remark that further numerical analysis of the 
data in Fig. 5 enables a more precise estimate of J.I. to 
be made as 

J.I. = 2.6390±O.OOOS. (14) 

It is clear from Fig. 4 that a good estimate of the 
asymptotic behavior of the function U(x) can now be 
made, and this will be undertaken in the paper referred 
to previously. In some respects, we may think of the 
series C(x) and U(x) as high-temperature expansions, 
for while x is only a dummy variable, there is a close 
analogy with the behavior of high-temperature expan­
sions for the Ising model in powers of the high­
temperature counting variable w. In general these 
high-temperature expansions are characterized by 
smooth behavior of their coefficients, enabling the 
radius of convergence and asymptotic behavior to be 
estimated with some confidence. 

4. CONCLUSIONS 

We have shown by an examination of the available 
data that the coefficients in some series expansions 
that arise in the theory of the Ising model and the 
excluded volume problem behave smoothly and 
provide a reasonable basis for extrapolations. We have 
been guided by the known exact behavior for two­
dimensional Ising models and have made estimates for 
the critical temperatures of some three-dimensional 
lattices. We collect these results in a table together 
with those for the excluded volume problem parameter 
J.I. taken from Fisher and Sykes. 7 

It can be seen from Table I that while the critical 
values of both 1/ qw and J.I./ q for plane lattices or 
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TABLE I. Critical values for the Ising model and 
excluded volume problem. 

sq L\ lar sc bcc fcc 

Ising model 
Excluded volume 

problem 

1/quo,=0.6036 0.6220 0.7640 0.8004 0.8192 
ll/q=0.6599 0.6920 0.7816 0.8175 0.8375 

three-dimensional lattices are close together there is 
a wider separation between two- and three-dimensional 
lattices. It would seem that dimensionality plays a 
dominant role in these problems and this observation 
extends also to the asymptotic behavior of the co­
efficients. The further evidence we have examined 
enables us to suggest with increased confidence that 
while the susceptibility of a plane Ising lattice has a 
singularity at the Curie point of the form (1- TclT)-7/\ 
for a three-dimensional lattice the corresponding 
singularity will be of the form (1- TjT)-5/4. 

For the excluded volume problem it has been 
suggested by Fisher and Sykes that cn"'"n1/3J.Ln for a 
two-dimensional lattice, the index i being indicated 
for the simple quadratic, triangular, and honeycomb 
lattices. For three-dimensional lattices the data are 
not so extensive but the index (0.17±0.03) is approxi­
mately the same for the simple cubic, bee, and fcc 
lattices. In this problem too it would seem that 

dimensionality is of primary importance in determining 
asymptotic behavior. 
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APPENDIX 

Susceptibility expansions for three-dimensional lat­
tices. We give the expansion in powers of w of the 
reduced susceptibility as defined in the previous paper.l 

Simple cubic lattice. 

1+6w+30w2+150w3+726w4+351Ow5+1671Ow6 

+79 494w7+375 174w8+1 769686w9 

+8306 670wlO+38 972 214wll • 

Body-centered cubic lattice. 

1 +8w+56w2+392w3+ 2648w4+ 17 864w5+ 118 760w6 

+789 032w7+5 201 048w8+34 268104w9• 

Face-centered cubic lattice. 

1+ 12w+132w2+ 1404w3+14 652w4+151116w5 

+1546 332w6+15 734 46Ow'+159 425 580w8• 
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On the General Theory of the Approach to Equilibrium. II. Interacting Particles 
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The general method described in a recent paper by Prigogine 
and Henin [J. Math. Phys. 1, 349 (1960), hereafter referred to 
as I] is applied to a system of interacting particles. A full use is 
made of the diagram technique due to Prigogine and Balescu. 
The distribution function is Fourier analyzed and each Fourier 
coefficient is decomposed into two parts: one (p') whose evolution 
results from scattering processes and which obeys a diagonal 
differential equation; the second one (p"), whose evolution is due 
to direct mechanical interactions which build the correlation 
described by the Fourier coefficient. The p" can be expressed in 
terms of functions p' corresponding to lower correlations. We 
study first the velocity distribution function. Only scattering 
processes contribute to the evolution of this function. The equa­
tions obtained ensure evolution of this function to the correct 

1. INTRODUCTION 

I N a recent paper,! I. Prigogine and one of us (F.H.) 
have shown that it is possible to study formally 

the problem of the evolution in time of a system of 
interacting normal modes up to an arbitrary finite order 
in the coupling constant }.,. This was made possible 
through a systematic use of the diagram technique 
developed in preceding papers.1- S 

The diagrams so introduced describe the dynamics 
of the correlations which exist among the normal modes. 
Their asymptotic behavior for a very large number of 
degrees of freedom and long time is suprisingly simple. 
There are two main classes of diagrams which con­
tribute asymptotically: first of all, diagrams corre­
sponding to a succession of independent scattering 
events, and secondly diagrams which describe the 
building up of the correlations. The Fourier components 
which describe those correlations can also be divided 
into two parts. Through this decomposition, the 
behavior of the system for long times becomes very 
clear. In the case of interacting normal modes, it has 
been possible to show that up to order }.,2, the system 
reaches the correct equilibrium distribution. The mathe­
matical complexity of the operators involved made it 
difficult to give a proof valid at an arbitrary order. This 
was mainly due to the action dependence of the inter­
action energy, which leads to a "renormalization" of the 
frequencies. 

From this point of view, the situation is much simpler 
in the case of interacting particles with a potential 
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equilibrium value at any order in the concentration C and the 
coupling constant A. We then study the asymptotic behavior of 
the Fourier coefficients which describe correlations among the 
particles. The part p' of these coefficients corresponding to scat­
tering processes vanishes for large time. In other words, scattering 
processes play a fundamental role in the establishment of the 
correct velocity distribution function, but once this is achieved 
they become ineffective. The correct equilibrium correlations, 
which in equilibrium theory are described in terms of cluster 
diagrams, are built by direct mechanical interactions among the 
particles involved in the correlation. We give a detailed proof up 
to order 0. The extension to higher orders does not introduce 
any new feature. 

energy which is only a function of the coordinates. At 
equilibrium the velocity distribution function is simply 
a function of the unperturbed Hamiltonian. All corre­
lations which exist in the system are also quite simple 
functions. This made it possible to establish a general H 
theorem, valid to any arbitrary order Cm}.,n (m at least 
finite), where C is the concentration. 

First of all, we establish the evolution equations for 
the velocity distribution function and the correlations 
in Fourier space. This is done by exactly the same 
method as for interacting normal modes. A minor dif­
ference between the two problems is however the 
diagram technique. We deal here with particles which 
have an individuality, whereas in the case of interacting 
normal modes we deal with excitations with no indi­
viduality. The differences appear in the fact that con­
nected diagrams actually now play an important role. 
In fact, those diagrams determine the irreversible 
behavior of the system. Indeed, they are the only 
diagrams which contribute to the evolution of reduced 
distribution functions of a finite number of degrees of 
freedom, which are the only functions for which an 
irreversible behavior might be expected. This problem 
has been treated in two papers by Prigogine and 
Balescu.2 •3 All details concerning the Fourier expansion 
of the distribution function, the initial conditions and 
the basic diagrams can be found in those papers; 
however, one remark has to be made concerning the 
time dependence of general diagrams. In footnote 
references 2 and 3, all calculations were done in the 
interaction representation; however, some features are 
then not very clear. In fact, when the usual represen­
tation is used, the time dependence of the general 
diagrams becomes much simpler. General theorems 
concerning this point will be derived in the Appendix. 
By taking into account these theorems, one can again, 
as in the case of interacting normal modes, decompose 
any Fourier component describing a given correlation 
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into two parts: one p' ('Y) which contains the effect of 
the scattering of the particles, the other p" (1') which 
contains the effect of the direct mechanical interactions 
between the particles involved in the correlation. The 
functions /(1') obey quite simple diagonal differential 
equations whereas the functions p" (1') can be expressed 
in terms of operators acting on the p' ('Y) describing 
lower correlations. 

As in the case of interacting normal modes, we take 
the coupling constant A as parameter in order to derive 
these equations. This amounts to a classification of the 
diagrams according to the number of vertices involved. 
Although in the case of interacting normal modes this 
was the only expansion parameter, in the case of inter­
acting particles we have another one, the concentration 
C. Very often, this is in fact the expansion parameter 
which should be used (strong forces). This, however, 
can easily be done by a mere regrouping of the terms 
involved in the equations obtained by expansion with 
respect to A. 

Then, instead of classifying the diagrams with 
respect to their number of vertices whatever the 
number of particles involved, one classifies them with 
respect to the number of particles whatever the number 
of vertices. This is actually a very interesting feature. 
Indeed, the behavior of the system, whatever parameter 
one wishes to take, can be inferred from a study of the 
diagrams which appear in the equations from either 
point of view: number of vertices and number of par­
ticles. This is in fact very easy to do. The general 
results are the following: 

The velocity distribution function becomes for long 
times a function of the unperturbed energy as required 
by the general theory of equilibrium. 

The part p' (1') of the correlations vanishes for such 
time; and then the p" (1') are entirely determined by the 
velocity distribution function. 

In other words, the correct equilibrium correlations 
are built from a state without correlations by direct 
mechanical interactions of the particles involved in the 
correlation. Scattering effects play a role only in the 
establishment of the required velocity distribution 
function. 

2. FOURIER ANALYSIS OF THE DISTRmUTION 
FUNCTION 

The Hamiltonian of the system is of the form 

H=Ho+AV 
.v 

=L plj2m+ALi<i Vii(/Xi-Xi/). (2.1) 
i=l 

The Liouville operator corresponding to this Hamil­
tonian is 

L=Lo+ML 

where 
(2.3) 

The distribution function p({x}{p}t) can be expanded 
in terms of the eigenfunctions of the unperturbed 
Liouville operator Lo (for more details see footnote 
reference 2): 

p( {x}{ p}t) 

= (81r3Q)-N{po+n-1 Lk' Li Pk i exp[ik· (Xj-Vjl)] 

+Q-I Lk' Li<IPk i / exp[ik· (Xj-x/-Vjl-Vlt)] 

+Q-2 Lk' Lk/ Li<l Pkik,l 
k+k'r'O 

where we have ordered the various terms according to 
the number of nonvanishing wave vectors (the dash 
in the summations over wave vectors means that k=O 
has to be excluded). As in footnote reference 2, we make 
the assumptions that the various Fourier coefficients 
do not depend explicitly on N or n in the asymptotic 
limit (N -+ ex;; , n -+ ex;; in such a way that N In remains 
finite). The factor (8rm-N in front of (2.4) ensures 
normalization of the distribution function to unity. The 
other Qn factors (where n is the number of independent 
wave vectors in the corresponding coefficients, i.e., the 
number of nonvanishing wave vectors minus the 
number of relations of the form k1+k2+··· =0 which 
exist among them) ensure that already at the initial 
time one can define extensive and intensive properties of 
the system in the thermodynamical sense. 

The physical meaning of the Fourier coefficient po 
plays a special role. This coefficient is just the velocity 
distribution function. All the other Fourier coefficients 
give us information about the spatial distribution, i.e., 
about the correlations which may exist between the 
particles, and the spatial inhomogeneities. More pre­
cisely, any Fourier coefficient such as Pkl,ml, ••• " "'knmn 

,,:,ith Li~ln k i describes a correlation between n par­
tIcles; whereas the same coefficient for which the sum 
of the wave vectors is nonvanishing is related to spatial 
inhomogeneities in the system. 

A general Fourier coefficient can describe several 
correlations and contain several inhomogeneity factors. 
For instance, the Fourier coefficient 

Pkl.m.l, k2, m2, ka, m:J, k4. 1114, k5, mo, kSm6 

with kl+k2+k3=O, k4+k5=O, k6~O, (2.5) 

describes a triple correlation between particles ml, 
m2, m3, a double correlation between particles m4 and 
mS, and contains an inhomogeneity factor related to 
particle m6. 

It is not necessary to study the behavior of such gen­
eral coefficients. It can be shown that they can be fac­
tored into products of coefficients describing simply 
each of the correlations and inhomogeneity factors 
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FIG. 1. Basic diagram. 
(a), (c): Creation (de­
struction) of a corre­
lation ; (b), (d) : Increase 
(decrease) of the number 
of particles in a corre­
lation; (e): Exchange 
of particles; (f): Prop­
agation of correlation. 

(for more details about this, see footnote reference 4). 
On introducing (2.4) in the Liouville equation for the 
distribution function, one obtains the evolution equa­
tion for those Fourier components: 

f},-rapka."· ... .. 'k: / at 

=>"Q-l Lm<n exp[i(kava+· .. +k,v,)t] 

X{(k,,·· ·k,!oLmn!O)PO+Q-l Li 

XLk/(ka' . ·k,! oLmn! k/) exp( -ik/vjt)Pkj'j 

+Q-2 Lj<s L'k/.ks'(ka ·• ·k,!oLmn!k/k/) 
ki'+k8'~O 

Xexp[ -i(k/vjt+k.'vst)]Pkj· j
ks·

8 

+Q-l Li<8 Lk/(k,,·· ·k,!oLmn!k/,k.'= -k/) 

Xexp[ -ik/· (Vj- v ,)t]Pkj.is+ ... }, (2.6) 

where 'T represents the number of independent wave 
vectors in Pka."· ... .. ·k:. The matrix elements in the rhs 
of (2.6) are given by 

{k,,· .. k,j oLmn! k/· .. k/) 

= (811"3Q)-N f (dX)N exp[ -i(kax,,+· .. +k,x,)] 

X (aV mn/ axm)· Dmn exp[i(k/Xi+' .. +k.'xs)]. 
(2.7) 

They represent a transition from the state {k'} to the 
state {k} due to an interaction between molecules m 
and n. They vanish unless all wave vectors k=k', 

o 

except km~km', kn~kn' with however the following 
conservation law: 

(2.8) 

Because of these properties of the matrix elements of 
oL the set of equations (2.6) can be decomposed into 
independent subsets of equations. In each of these 
subsets, we have only Fourier coefficients with the same 
value of the total wave vector. For instance, for 
homogeneous systems, all Fourier coefficients are zero 
except those describing correlations among the particles 
(total wave vector vanishing). As those coefficients form 
an independent subset, if the system is initially homo­
geneous, it will remain so in the course of time. 

3. HOMOGENEOUS SYSTEMS-FORMAL SOLUTION 
OF (2.6)-INITIAL CONDITIONS 

Equations (2.6) can be formally solved by iteration. 
Any term of this formal solution is a product of matrix 
elements of oL times the initial value of a Fourier com­
ponent and contains integrals over the time oscillating 
exponentials associated with those matrix elements. We 
wish to study the behavior of the system for large 
times t. For times t much larger than the duration of a 
collision, asymptotic integrations may be performed 
and any term of the formal solution of (2:6) becomes 
proportional to some power of A and some power of t. 
In fact, any contribution is proportional to Ar(A2t)m. 

As is the study of interacting normal modes, we wish 
to keep all contributions up to a given, finite value of 'T. 

The easiest way to find the values of 'T and m corre­
sponding to a given contribution is to make use of a 
diagram technique. This technique has been explained 
in footnote references 2 and 3. It consists mainly of 
associating a line to each non vanishing wave vector. In 
this way one obtains a very simple picture of the 
dynamics of correlations as expressed by the evolution 
equations. The diagrams corresponding to the most 
general term in the formal solution of (2.6) can be clas­
sified according to quite general topological properties. 
Their time behavior is a direct consequence of their 
structure as we shall see in Sec. 4. 

To specify completely the A dependence of the 
various contributions, we have to choose a given class of 
initial conditions. We shall take the same initial con­
ditions as in footnote reference 2 (for discussion see 
Sec. 12), namely, 

where 
(3.1) 

'Y+l 

Lki=O (3.2) 
i=l 

describes a correlation between Cy+ 1) particles. 

FIG. 2. Example of disconnected diagram (four disconnected 4. DIAGRAM-TIME DEPENDENCE 
parts) ; particle a propagates through the whole diagram . 

• 1. Prigogine, Non-Eq1tili&rium Statistical Mechanics (Inter- There are six basic types of vertices which have been 
science Publishers, Inc., New York, to be published). introduced in footnote reference 2 (see Fig. 1). On 
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FIG. 3. Examples of connected 
basic structures: (a) a connected 
part and its basic structure; (b) 
diagonal connected basic structure; 
(c) destruction connected basic 
structure; (d) creation connected 
basic structure. 
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combining these basic vertices, we obtain various types 
of diagrams which we intend to classify according to 
their topological structure. Let us first decompose a 
given diagram into its disconnected parts (or semi con­
nected parts2), defined, as usual, in such a way that no 
propagation line connects any two vertices belonging 
to different disconnected parts (see Fig. 2). 

Among these disconnected parts, some may have a 
line corresponding to the same particle a propagating 
through the whole diagram from 0 to t; because we 
want to describe such a propagation exactly, we shall 
not make any asymptotic integration on the wave 
vector describing this motion, but only on the wave 
vector associated with the interactions (see Appendix). 
As we want to maintain a close relationship between a 
given diagram and its asymptotic time dependence, we 
define the "basic structure" of a disconnected part as 
the diagram obtained by "subtracting" the line kaVa 

(if any) in the given disconnected part. Let us notice 
that.a connected diagram may have a disconnected basic 

C> ~ 
<S> 

(a) 

C> 
(b) 

C> 
(C) 

FIG. 4. Examples of fragments: (a) diagonal, (b) creation, (e) 
destruction. 
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(d) 

structure [Fig. 3 (a)]. We may get the following possible 
connected basic structures: 

(a) Diagonal connected basic structure: a diagram in 
which the initial and final states are the "vacuum" 
({k i } = {O}) without any intermediate state with 
{ki}={O}. 

~b) Cre~tion. connected basic structure: a diagram 
which begms With the vacuum and ends with a final 
state {ki};;x£{O}. 

(c) Destruction connected basic structure: a diagram of 
any kind in which the initial state differs from the 
vacuum. There are two kinds: those in which the final 
state is the vacuum and those in which the final state 
represents correlations. 

We now generalize our definitions to any diagram 
made up of many disconnected parts: ' 

. (a) Diago~al ~ragment: any combination of diagonal 
diagrams which IS such that no intermediate states have 
{k,} = to}. 

(b) Creation fragment: any combination of creation 
and diagonal diagrams such that no intermediate states 
correspond to the vacuum. 

(c) Destruction fragment: any combination of de­
struction and diagonal diagrams such that no inter­
mediate states correspond to the vacuum. Examples are 
given in Fig. 4. Moreover, we shall often use the nota­
tion sh?wn in Fig. 5, where (a), (b), and (c) represent, 
respectively, the sum of all diagonal, creation, and 

(c»(c )( ~} 
m (i (~') a) b COl m (V 

a) ( ) (C) 

FIG. 5. 
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destruction fragments with i vertices which allow a 
transition from a state,), to a state,),'. Examples are 
given in Fig. 6. 

In the following we shall not explicitly state that the 
terms "diagonal fragment," "creation fragment," and 
"destruction fragment" always refer to the basic 
structure of the given diagram; however, this will 
always be assumed. With these three basic types of 
diagrams, we can construct two general classes of 
diagrams. Any diagram in the formal solution of (2.6) 
will be met in one of these two classes. First, we have 

o 

a o 

reducible diagrams, i.e., diagrams which can be decom­
posed into the following regions: 

creation fragment I diagonal 

region I destruction fragment, 

where the diagonal region is a succession of diagonal 
fragments. Particular cases are the diagonal diagrams, 
destruction diagrams, creation diagrams.' 

In the second class, we have the irreducible diagrams, 
i.e., diagrams which cannot be decomposed into the 
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o~ 
(bJ 

(e) 
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C __ C:X=~t) 
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8 (d) I f3 I /V t' 

~ C--X :X:X=>oC: 
FIG. 7. (A) Reducible diagrams: (a) diagonal diagram, (b) destruction diagram, (c) creation diagram, (d) reducible creation­

destruction diagrams. (B) Irreducible diagrams. 

characteristic regions already described. They all 
contain a creation and a destruction fragment which 
cannot be separated. Examples of general diagrams are 
giyen in Fig. 7. The asymptotic contributions of these 
diagrams are derived in the Appendix. The theorems of 
footnote reference 1 are valid here also: 

Theorem I. Any reducible diagram has an asymptotic 
contribution proportional to tm, where m is the number 
of diagonal fragments in the diagonal region of the 
diagram. 

Theorem II. Any irreducible diagram has a vanishing 
asymptotic contribution. 

5. ASYMPTOTIC CONTRIBUTIONS TO 
THE FOURIER COMPONENTS 

By taking into account the foregoing theorems, we 
see that we have only to consider the reducible dia­
grams. As in footnote reference 1, we shall subdivide 
them into two classes: 

(1) Diagrams which contain no creation fragment, i.e., 
diagonal and destruction diagrams. 

(2) Diagrams which contain a creation fragment, 
Le., creation and reducible creation-destruction dia­
grams. We shall decompose the Fourier coefficients into 
two parts: 

"),+1 

exp[ -i L: kjVitJP(")')(t) 
1=1 

")'+1 

=exp[ -i L: kjvjlJp'(")')(t)+p"(")')(t), (5.1) 
1=1 

where p' (")') (t) is made from all the contributions of the 
first class and will obey a diagonal equation (Sec. 6) 
whereas p" ('Y) (t) is made from all the contributions of 
the second class and will be expressed in terms of the 
functions p' ("{) (t) (Sec. 7). 

The physical meaning of this decomposition is the 
same as in footnote reference 1: the evolution of the 
functions p' (oy) (t) is due to scattering of the particles 
whereas the functions p" (oy) (t) depend on the direct 
mechanical interactions between the particles which 
build the correlation (1'). 

On taking into account the initial conditions (3.1), 
one can expand the functions p' ("{) (t) in the following 
way: 

p' ('Y) (t) =X 'Y{p' (")') (0) (t) +Xp' (")') (I) (I) +XV (")') (2) (I) + ... }, 
(5.2) 

where the functions p' (")') (T) (I) contain all diagonal and 
destruction diagrams with asymptotic contribution pro­
portional to A'("A2t)m, m arbitrary integer ~O. Equation 
(5.2) is, however, not a true expansion in power series 
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FIG. 7. (A) Reducible diagrams: (a) diagonal diagram, (b) destruction diagram, (c) creation diagram, (d) reducible creation­

destruction diagrams. (B) Irreducible diagrams. 
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where (5.4) expresses the fact that no creation fragments 
ever contribute to the evolution of p(o). Again p" (1') (r) (t) 
contains all creation and reducible creation-destruction 
diagrams with asymptotic contribution proportional to 
Ar(A2t)m, m arbitrary ~O. 

6. EVOLUTION EQUATIONS FOR THE 
FUNCTIONS ,,/(~)(r)(t) 

We shall prove that these functions obey the following 
equation: 

(6.1) 

Let us first consider some simple examples. At order AO, 
we have just to consider the lowest order contributions 
to the velocity distribution function poCO) (t). The only 
diagrams which are asymptotically proportional to 
(A2t)m are diagonal diagrams made of a succession of m 
cycles (see theorem I). Therefore we have 

'(O) C>C> ( )A fe ct)::: F oeolt];, <2> fo (0) 

(6.2) 

By derivation with respect to time, one obtains the 
usual master equation for weakly coupled systems 
which is a particular case of (6.1) for r=O and ,),=0. 
At order A, we have two new equations to take into 
account: one for the next-order velocity distribution 
function p' (0) (I) (t) and another one for the lowest-order 
contribution to the Fourier component describing 
binary correlations p/(l)(O)(t). Here again we have only 
diagonal diagrams. In the case of the velocity distribu­
tion we must include a diagonal fragment with three 
vertices among the cycles; whereas in the case of 
p' (I) (0) (t) the extra A factor comes from the initial con­
ditions. We obtain for p/(O) (1) (t) 

2 (I =( )q 
= A <::V)o J..t, ~ C0 Foco) 

In the second step we have separated the contributions 
corresponding to p=O and p¥-O and have written 

explicitly the first diagonal fragment at the left. All 
contributions at the right of the integral fotdtl have to 
be evaluated asymptotically up to time t1• 

The equation for P'(l) (O)(t) is exactly the same as (6.2), 
with the only difference that the cycles are now on two 
lines corresponding to the existence of the binary cor­
relation 

( ) i
t 1(0) 

= F{l)(O)+ <D Jl, r (1) (t,). 
(1) (1) o· . 

(6.4) 

At order )..2, we have three new equations: for p' (0) (2) (I), 
p' (l) (I) (t) and pi (2) (0) (t). In the case of p' (0) (2) (t), the 
diagonal diagrams must be of order )..2. This means that 
in addition to cycles, we must consider either two diag­
onal fragments with three vertices or one fragment with 
four vertices. Moreover, we can have destruction 
diagrams with one destruction transition [Fig. 1 (c)] 
starting from a binary correlation: 

x<D (<DJFo(o) 

+ ~ ta (0:» C0 (<:0) Fo(o) 

+ ta (<:I> J c= F(1) (0). (6.5) 

If we consider separately the terms with p=O and p¥-O, 
we obtain the equation 

• G>t ~{~~(0)q G>(0)mFo(Ol} 

+ <£>1 dtll~ ~; (C0r1 

<2> (0)q 

( 
\q .... ( )P.t 

x <0 0) FG(O)+ t; 0 

(6.6) 
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where we have taken account of (6.2), (6.3), and (6.S). 
As the first term on the rhs of (6.6) is a constant, by 
derivation with respect to time we obtain (6.1). The 
diagonal contributions to p' (1) (1) (t) are the same as 

where (1') means that the correlation in the initial state 
is different from that in the final state either by one of 
the particles involved or by the wave vectors. By taking 
into account the fact that the last term for p=O is a 

those to p' (0) (1) (t), two lines being added to the cycles; 
however, in this case, at the left we can also have 
vertices of the type (e) or (f) of Fig. 1. Therefore, we 
have the equation 

(6.7) 

constant, one can handle this equation exactly in the 
same way as the previous ones and again obtain (6.1). 

Let us now consider the general case. Taking into 
account the definition of the functions p' ('y) (T) (I), we have 

~ -p' (t)=p(o) 5 +1j(r-1)(1-5 ) «D p (0)+1j(r-2)L: (E) p (0) 
(V) (v) r,o v.o (y) (v)' (Y)' V·'Y·I (y) (Y1 (y') 

+ t. {s diagonal fragments made of (2SH) transitions} p (0) 
~ (Y) 

+1j(r-1) (1-5 ) t E {s diagonal fragments made of k transitions}x (<Z::§:) p (0) 
Vh s,1 ,ds (v) (Yl' (v)· 

i£-~ (r-l<.2s)/2.V 

+1l(r-2) L L- {s diagonal fragments made of k transitions } xC::: (<['H""S) p (0) 
<,1 b2s V·,V.I (V) (v) (V) , (6.8) 

.where 'I/(x) is the Heaviside function. 
All those contributions are of the order Xr+'Y. The first 

one is the initial condition. The second and third one 
correspond to the contribution of destruction fragments. 
The second one is in fact an exchange fragment: the 
correlation (y') contains as many particles as the cor­
relation (')'). We have at least one of the vertices (e) 
or (f) of Fig. 1 in this contribution and therefore an 
uncompensated X factor. This accounts for the factor 
'I/(r-1). The factor (l-0'Y.o) accounts for the fact that 
such diagrams do not exist if ')'=0. 

In the third term, as ')">')', we must at least have 
one of the vertices (c) or (d) of Fig. 1. This brings at 
least one X factor. As ')">')', we must at least have at 
our disposal a X2 factor which accounts for the function 
'I/(r- 2). The fourth term corresponds to the con­
tribution of all diagonal diagrams of the required order, 
whereas the fifth and sixth ones correspond to the con­
tributions of diagonal fragments preceded by a de­
struction fragment; they differ in the same way as the 
second and third do. 

Moreover, when we have a destruction fragment, we 
must have at least one transition in the fragment. When 
')">')', we need in fact at least (')"-')') transitions to 
connect the two states. Let us for instance consider 
more closely the last term in (6.8). The general term 
of this type is 

r,. r: {s diagonal fragments made of k transitions) 
5=1 k=2s 

, ... ,"t..- 2S.~.y· ex t)" 
and, therefore, we must have 

(6.9) 

Since we must satisfy }J. ~ ')"-')', we obtain the condition 

( 6.11) 

In order to fix the limits on the summation, one has to but ')" ~ ')'+ 1 and, therefore, 
take account of the fact that the order of the diagram 
mustbeXr+'Y. k:<r+2s-2. ( 6.12) 
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The last three contributions in the rhs of (6.8) are the 
only ones which depend on time at the asymptotic 
limit. We can write them in another way, i.e., we can 
write explicitly the first diagonal fragment at the left. 
This can be done exactly in the same way as in footnote 
reference 1, and we shall not go through the details. We 
obtain 

p,(rJ(t) = constant 
!V) 

+ t it (®) L'dt, p.(V)(r-i)(t,), (6.13) 
ioo !V) (V) 0 

which by derivation with respect to time gives us the 
very simple diagonal differential equation (6.1). 

7. EVOLUTION EQUATIONS FOR THE 
FUNCTIONS 9"(y)(r)(t) ("(~ 1) 

These functions can be expressed in terms of the 
functions p' (,),') (T) (t) describing lower-order correlations. 
Let us first consider a few examples. The lowest order 
of these functions is p" (1) (0) corresponding to a binary 
correlation. 

In order to create such a correlation, we have to start 
from the state to} and use one vertex of type (a) 
(Fig. 1). This diagram provides the required :\ factor. 
Therefore it can only be preceded by a succession of 
cycles, which add no extra :\ factors uncompensated by 
a t factor. We thus have the equation 

f o(O) --...... <>0 ()P (0, 

OJ ct>. --"" ~ <0 focol. => Fa (t) , (7.1) 

where we have used (6.2). 
At order :\2, we have to consider both p" (1) (1) (t) and 

P"(2) (0) (t). The contributions to P"(1)(1)(t) must contain 

one more>. factor than those in (7.1). Therefore, we 
must either add one vertex to the creation fragment 
[Fig. 1, (e) or (f)] or replace a cycle by a diagonal 
fragment with three vertices. We thus obtain 

f(~:l\ t). ( =:=> + :x=> } ( b ( C0 J Fo(o) } 

t => {~~ (evyo (0)q FOlol} 

(1) (=:2> ) (o,Fo(Ol( t) t (1) (=~:> )0) Fo
w 

(tl (7.2) 

using (6.2) and (6.3). 
In the case of the function p" (2) (0) (t), the creation 

fragment may start either from a binary correlation 
or from the state to}. In the first case, we need a vertex 
of type (b), Fig. 1, whereas in the second case we need 
a vertex of type (b) and one of type (a). 

On taking account of the initial conditions, both will 
lead to a >.2 factor. Therefore they can only be preceded 
by cycles and we have 

Fc2) (0= =>- L Q=> Fcll(o) 
,,(0) \ coo.[ ( ) ] P ) 

__ P.o (1) (1) 

(7.3) 

More complicated diagrams will occur at the next 
order because of the possibility of starting the diagram 
by a destruction fragment. This is illustrated for 
p"(l) (2) (t) and P"(2) (l)(t) in Eqs. (7.3') and (7.3"). 

F(~i2)(t) = { ~ ~ =::=> + ~ +:X::=::X=>+ ~ + ~} (C0 Y fo(o) 

+ {~+ -x=> }(<8y <V (<0)q PoCO) T J{(<I» <I>(<2>JC0(<2>t 

+ (C0)P C0 (<0J] foco) + => (<VY C F(i)(o), (7.3') 

fc';)hl (t) = { ~ + ~ + ?C) + ... } x( <I;> J Foco) + ~ (<I> J <V (Q=»q foco) 

~ { =:>- ~ x=>-- + ~ + ~ } f:IJf Fcll(o) 

+ F(2)CO)~~ + (7.3") 
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The general equation may be written 

'/ (r) Y-1 A p. (t)=1: exp[-i(kv)tl (~) p (0) 
(y) V:O Y nt (Y1 (Y') 

+ r: E exp[-i(kv)t] G» ,,(r-1) (1-5 ) (<!'Y-~-Y' L P (0) 
Y':O ~:Y-Y' Y' (Y) (Y') Y',. (Y1 (Y) (Vy 

y-, r+Y-Y'-2 (r.y.y·-~)l2 

+1: Cexp[-i(kv)t] G» ,,(r-2)~ (<E.Y+ Y") p (0) 
v':. "=Y-Y' Y' (YI (yj Y":'I'.1 (Y') IV1 (Y") 

+ ~ exp [-i(kv)}] ~ Jv {.1 ~ {s diagonal fragments made of (r+"Y-1L+2s-yl transitions) PIY'~O) 

+r: exp[-i(kv)tl E (V) 1](r-1)(1-5 )I: ,'WZS-V'1 {sdiagonal fragments made of 
v·:.o Y' !-L=Y-V' (V) (Y'} y',O 5:1 k=2s 

k transitions}x (<i:'V."-k.ZS-y ) P (0) 
IV') IYT IY')' 

y-, r+Y-Y'-2 00 r.Y-'Y'-1.l+2s-Z { } 
+ r: exp [-i(kv) U C G» r:) s diagonal fragments made of k transitions 

Y=o V' I-L=V -yo (Y) (y') s .. 1 K=ZS 

The various terms correspond to the following con­
tributions: (1) creation fragment, (2) and (3) destruc­
tion fragment followed by creation, (4) diagonal frag­
ments followed by a creation fragment, (5) and (6) 
destruction fragment followed by diagonal fragments 
followed by a creation fragment. All these terms are of 
order AT+"Y. The limits of the summations are fixed in 
the same manner as in Sec. 6, taking into account the 
supplementary conditions that there must be at least 
one vertex of type (a) or (b) in the creation fragment 
(i.e., ')" < ')') and the fact that the minimum number of 
transitions required in that fragment is (,),-,),'). The 
oscillating exponentials in front are related to free 
propagation of the correlation (')"). All these terms have 
one common feature: the existence of the creation 
fragment at the left. If we take into account (6.8) and 

r+'Y-"('-l 

L 1)(r-1)(1-0"y"o) 
p.='Y-')' , 

r+y-),' 
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r+'l'-')"-2 r+'Y-,),' 
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p.=r-')" .u='}'-'}" 
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Y':o V:O V IY) IV') IV') 
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x L)".,..,.,....-_ 
y':V',1 

«f'V-"-k.ZS-V") p (0). 
Iv1 (v") IV") 

(7.4) 

This equation gives us the functions p" ("Y) (T) (t) in terms 
of the functions p' ("y') (T-V) (t) which describe lower cor­
relations. 

8. EQUILIBRIUM DISTRIBUTION 

For systems of interacting particles, the interaction 
forces are often strong and the relevant expansion 
parameter is the concentration C. 

Let us consider the canonical equilibrium distribution 
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f f (drdp)N exp[ -/3(Ho+AV)] 

Expansions of (8.1) in power series of the concentration 
have been extensively studied in equilibrium statistical 
mechanics.o,6 As the potential is independent of the 
velocities, the equilibrium velocity distribution function 
is always given by 

whatever the order in C or A. 
The pair correlation function is given by7: 

.. 
=exp[ -,BV(r12)]X[1+L Ck')'k(r12)] (8.3) 

k=l 

6 J. Van Leeuwen, J. Groenenveld, and J. de Boer, Physica 25, 
792 (1959), 

6 E. Meeron, Phys. Fluids 1, 130 (1958). 
7 We use here the definitions given by J. Van Leeuwen, J. 

Groenenveld, and J, de Boer in footnote reference 5, 
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(b)'h' X 
1 2 1 2 

(0) ,<tA, v-\ 
1 2 1 2 

FIG. 8. Examples of cluster diagrams corresponding to products 
of jii's in (8.5). (a) Irreducible diagrams, (b) 3 == articulation 
point, (c) l==articulation point. 

with 

'Yk(rlz)=!- f··· f L II f(rij)dr3" ·drk+2, (8.4) 
k! (sp. irr.) 

f(r,j)=exp[ -(W(rij)J-l. (8.S) 

The summation in (8.4) is carried out over all different 
products of factors f(rij) excluding f(rI2) itself, provided 
the product corresponds to a "specific irreducible 1-2 
diagram." Such diagrams are cluster diagrams with 
two reference points 1 and 2 and k numbered (dis­
tinguishable) points 3,4·· ·k+2 which are connected 
by a certain number of bonds, each bond corresponding 
to one of the factor f(rij) in the product considered. 
Such a diagram is called irreducible when it is a con­
nected diagram [not containing the direct bond (1-2)J 
which has no articulation point. Examples are given in 
Fig.8. 

At equilibrium the Fourier coefficient p(l) describing 
a correlation between particles 1 and 2 is given by [see 
(2.4)J 

n-I[PII-l exp(ilvI2t)].QU 

= f (dr)N exp( -ilrI2)pequ 

=n-I(7T{3-I)3N/2 exp( -{3Ho) f drl2 

Xexp( -ilrI2)g(rI2). (8.6) 

This Fourier coefficient leads to contributions to intensive 
variables which are at least of order C. Indeed, if we 
consider for instance the contribution to the mean value 
of the potential energy per particle, we obtain 

(E) = "V-I L f (dr)NViJr,j)pequ 
.V ij 

= (Nn)-I L f dr ij f dl exp(ilr ij) V ij 

X[P1i_li exp(ilv,jt)JCqU = o (N2/Nn) =O(C). 

In the same meaning, the Fourier coefficients p(y) 

which describe correlations between (j.'+ 1) particles 
have to be taken into account at order cr, r~'Y. 

Let us consider more closely the contributions to the 
equilibrium distribution up to order C2. At order Co, 
the system is entirely described by the velocity distri­
bution function 

poequ= (7T{3-1)3N/2 exp( - {3Ho). (8.7) 

At order C, we have to take into account the lowest­
order contribution to p(l) : 

[P(l) exp(ilv12t)Jc 

= (7T{3-1)3NIZ exp( -{3Ho) f dr12 exp( -ilrI2) 

Xexp( -{3XVd. (8.8) 

The factor exp ( - {3X V 12) can be expanded in power 
series of the coupling constant X. Therefore the con­
tributions of order CX 8 will be 

[p(1) (.) exp(ilvlzt)Jc 

= (7T{3-1)3N/Z exp( -{3Ho) f drl2 exp( -ilr12) 

X(_{3V 1Z )8/S!' (8.9) 

At order C2, we have to take into account the next con­
tribution to P(I) : 

[p(1) exp(ilvlzt)JC 2 

=C(7T{3-1)3N/2 exp( -{3H~) f drl2 exp( -ilrd 

with 
X'YI(rI2) exp( -{3XVd, (8.10) 

(8.11) 

and the first-order contribution to the three-particle 
correlation 

[P(Z) exp{ - i(livi +12v2+lav3)t} JC 2 

= (7T{3-1)3N/2 exp( -{3Ho) Jdrl2drl3 

X exp[ - i (llrl +12r2+l~r3) J 
Xexp[ -{3X(VI2+ Vn + V23)J 

with 
(8.12) 

Both (8.10) and (8.12) can be expanded in power 
series of X. The contributions at order X 8CZ are then 
given by 

[P(l/') exp( -ilvd)Jc' 

=C(7T{3-1)3N/2 exp( -{3Ho) J drl2 exp( -ilrI2) 

X f
dr3 

~2 .-[1 __ ( __ {3)_8 __ 

p~o q~O P!q!(s-p-q)! 
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FIG. 9. Equilibrium diagrams at order OX·. (a) Contributions 
to the binary correlation 1-2, (b) contributions to the triple cor­
relation 1-2-3. 

and 

= (7ri3-1)3NI2 exp( -i3Ho) f dr12dr13 

( -13)' 
Xexp[ -i(llrl+12r2+1ara)]-­

s! 

These contributions can be represented graphically in 
a way very similar to the diagrams in Fig. 8; however, 
each bond between two particles will now correspond 
to a factor Vii> instead of a factor jij as in Fig. 8. 
Examples are given in Fig. 9. 

9. APPROACH TO EQUILIBRIUM-VELOCITY 
DISTRIBUTION FUNCTION 

This function is given by (6.7) for 'Y = 0: 

At lowest order in A (r=O), we have the master equation 
for weakly coupled systems2 : 

(9.2) 

The operator associated with the cycle is a self-adjoint 
operator with negative eigenvalues. The eigenfunction 
corresponding to the eigenvalue zero is a function of 
the unperturbed Hamiltonian Ho. Therefore, for long 
times, 

(9.3) 

We can use this result to study the next approximation: 

) 2 (0) 

ap:'1at= -X 0 p~' + X 0 Po , (9.4) 

= -X 0 p~) + -X <D f( H) . (9.S) 

We shall show that the second term in the rhs vanishes. 
Therefore, we can study (9.S) in the same way as (9.2) 
and obtain 

(9.6) 

We can go on with this procedure. We shall obtain the 
required result 

Po-> F(Ho), (9.7) 

provided we can establish the following relation: 

o lP (H) = 0 (9.8) 

for any value of m>2 (<p arbitrary function). 
The diagonal fragments with m vertices can be 

further classified according to the number of particles v 
which appear in the fragment (2 ~ v ~ m). Let us denote 
by an indice v a diagonal fragment with m vertices in 
which at most v particles appear. Rather than (9.8), we 
shall establish the more precise relation 

(9.9) 

Equation (9.8) will be obtained from (9.9) for v=m. 
This relation is in fact more interesting than (9.8). 
Indeed, if the interaction forces are strong, the relevant 
parameter is the concentration. To obtain a description 
of the system in that case, we should have to write 

'" po(t)=L xrpo(r) (t), (9.10) 
r=O 

and expand this function with respect to C, with the 
condition Ct finite (instead of X2t). This can be done 
by taking into account the fact that the order in C of 
a diagram is related to the number of particles which 
appear in this diagram. For instance, at order Co, the 
evolution of poet) would be given by all the diagrams for 
which v = 2, whatever the number of vertices8 (sum 
over m from 2 to 00). Therefore whatever the relevant 
parameter, A or C, (9.9) will ensure the proper asymp­
totic behavior of the velocity distribution function. If 
we take into account the fact that to each vertex of a 
diagram in which at most v particles appear corresponds 
a matrix element of the form 

v 

Xexp[i L l/x;] (9.11) 
j~l 

with 
(9.12) 

and that to each time interval between two vertices 

81. Prigogine and F. Renin, Physica 24, 214 (1958). 
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81. Prigogine and F. Renin, Physica 24, 214 (1958). 
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corresponds a propagator of the form (see Appendix)9 

, 
rieL Ijvj-iE)]-l 

j=l 

xI (dx)'G(v) (Xl' .. XvVl' .. vv) exp[ -i :i: IjXj] (9.13) 
j-1 

with 

G(v)({X}{V}) 

(9.14) 

the lhs of (9.9) can be written (2 ~ v ~ m) 

L <f0} loVv) I {leO} )({l(1)} I G(v) I {1(0}) 
(I(I)) ••. {I (m-1l) 

X({l(l)} loVv) I {1(2)})({1(2)} IG(v)1 {1(2)}) .•. 

X({I(m-1)} I G(v) I {1(m-0})({l(m-1)} loVv) I {O})j(Ho) 

v 

X{ L [a V jm (Xjm(l)/Ox/O]D jm ) 
j<m=l 

Xexp[i Lj l/ox/l)] exp[ -i Lj l/l)x/2)] 

XG(') ({xP)}{Vj}) exp[ -i Lj l/oxP)] 

X{L [aVjm (Xjm(3»/axp)]Djm } 
j<m 

Xexp[i L j l/2)xP)}· .G(v) ({x/2m-2}{Vj} 

Xexp[ -i Lj l/m-1)x/2m- 2)] 

Xexp[i L; l/m-1)x/2m- 1)] 

X {L [av ;m(Xjm (2m-1»/ ax/2m-l)]Djm } j(Ho), (9.15) 
i<m 

where each set of {Z(i)}' s corresponds to Zl (i) 12 (j) •• ·Zv (i) • 
The summations over the l's can be transformed into 
integrals which can be performed immediately. 

L exp[i L I/0 (x/0 -x/2)-xP»] 
(I"))", (I(m-I)) 

Xexp[i L l/2)(XP)-x/4)-xP»}·· 

Xexp[i L l/m-1) (x/Zm-3)_xpm-2)_x/2m-I)] 

v 

=Q-' II o(x/0-xP)-xP»o(xP)-x/4)-xP»'" 

XO(X/2m- 3)_x;l2m-2)_x;I2m-1». (9.16) 

9 P. Resibois, Physica 25,725 (1959). 

This result can now be used in (9.15) to perform the 
integrations over all x/2l). We then obtain 

Q-' I (dx(1»,··· (dx(m», 

v 

x{ L [aV;m(Xjm(l)/ax/l)]D jm } 
i<m=1 

XG(') ({ x/O - xP)} {Vj}) 

X{ L [aVjm(Xjm(2»/ax/2)]Djm}'" 
j<m 

XG(v) ({x/m - 2L x/m-0} {Vj}) 

X{ L [aVjm(Xjm(m-°)jax/m-l)]Djm} 
j<m 

XG(v) ({ x/m- 1) - x/m)} {Vj}) 

X{ L [aV;m(Xjm(m»/ax/m)]Djm}f(Ho). (9.17) 
j<m 

In order to study this expression, we shall make use of 
the following relations: 

1 
-[L V jm]'{ L [aVjm(Xjm)/ax;]Djm}j(Ho) 
s! i<m i<m 

1 
=[aj/aHo]-[L V jm]'{ L [aVjm/OXj]Vjm} 

s! j<m j<m 

1 v a 
=[aj/aHo]-[L V jm]' L Vt-[L Vjm] 

and 

S! j<m 1=1 aXt j<m 

1 v a 
=[aj/aHo]--L Vt-[L Vjm]8+1 (9.18) 

(s+ 1) ! 1=1 aXt j<m 

, a v 

L Vt-G(v)({Xj-X/}{Vj}) = II o(Xj-X/) (9.19) 
1=1 aXt j=1 
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corresponds a propagator of the form (see Appendix)9 
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j-1 
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(9.14) 
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9 P. Resibois, Physica 25,725 (1959). 
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where we have first used (9.18), then integrated by 
parts and finally used (9.19) and performed the integral 
over the x(m). One can go on step by step following the 
same procedure. One then obtains 

• 
X[ L Vjm(Xjm(l»]=O, (9.22) 

j<m 

which establishes (9.9) and therefore the H theorem 
for the velocity distribution function. 

10. ASYMPTOTIC BEHAVIOR OF THE 
FUNCTIONS 9'(~)(r)(t) 

Here again we shall first consider the lowest-order 
contribution to these functions (r=O). Then we have 
the equation 

(10.1) 

It has been shown4 that for long times this equation 
leads to 

p' (~) (0) ~ O. (10.2) 

On using this result at the next order, we obtain 

a ,(1)/at=x (0) ,(1)(t), 
PM tvl M Ptvl 

(10.3) 

and therefore 
p' ('1') (1) ~ O. (10.4) 

This procedure can be followed up to any order. The 
asymptotic solution of the set of Eqs. (6.7) for 'Y~O 
is then 

p'('Y)~0. (10.5) 

In other words, the contribution of scattering of par­
ticles to the evolution of the phase correlation p('Y) (t) 
vanishes after a long time. 

II. ASYMPTOTIC BEHAVIOR OF THE FUNCTIONS 
9"(~)(r)(t) ('Y~ I)-APPROACH TO EQUI­

LIBRIUM AT ORDER C 

After a long time, we can use (9.7) and (10.5) in (7.5). 
If~we take for po the canonical distribution, we have 

Poerl(i) -+ (:0» (Ttfl-')3N/2 exp[-13H ]. (11.1) 
M (y) (0) I-' 0 

tions to the phase correlation P('Y)(t) come from the 
terms where this correlation is built from the state {O}' 
At this point, we can see that the decomposition of the 
phase correlation P('Y) (t) into two parts, p' ('1') and p" ('1'), 

is actually a very important feature of the theory; 
without the great simplifications introduced by this 
procedure, it would be very hard to establish any 
general properties at all . 

In order to have a complete H theorem, we have to 
show that (11.1) is identical with the equilibrium dis­
tribution. Equation (11.1) corresponds to the case 
where A is the relevant parameter; however, we can 
follow the procedure explained in Sec. 9 to obtain the 
equations if we want to use e as a parameter. At order 
em"}... we shall then have the equations 

for all values of I' and s such that 

The subscript (m+ 1) means that we have only to 
keep the diagrams where (m+1) particles appear. In 
order to establish that (11.2) corresponds to the correct 
equilibrium diagrams at order emA' we shall follow 
the same procedure as in Sec. 9; however, the proof 
will not be so straightforward. Indeed, in the case of 
the velocity distribution function, all the particles 
which appear in the diagram play the same role, whereas 
in (11.2) we have two groups of particles: first the 
(1'+ 1) particles which are correlated and then the 
(m-'Y) particles which appear at one vertex of the 
diagram and disappear at another one and which we 
shall call dummy particles. 

Let us first consider how the equilibrium distribution 
will be obtained at order C. We have to study only cor­
relations between 2 particles, which we shall denote by 
1 and 2. No dummy particles appear at this order. The 
only diagrams we have are given in Fig. 10. They cor­
respond to successive Born approximations. We have 

[p(l) (·)]c ~ (7r{3-1)3NI2(11 G(1,2) II) 

XL (1IoL I2 11(1)(I(I)IG(I,2)II(I) 
/(1) .•. /(,-1) 

This means that after a long time, the only contribu- On taking account of (9.11) and (9.14) and following 

FIG. 10. Creation fragments con­
tributing to the equilibrium pair 
correlation at order C. 

1 

=> 
2 

2 

x=> 
2 

1 2 1 2 

xxx=> 
2 2 2 1 2 
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the same procedure as used to obtain (9.17), we obtain 

[P(l) (o)Jc --t (1I'!3-l)3NI2Q-l(11 G(1.2) 11) 

XGO.2) (X(l) -X(2» (aVl2/ aXl (2»Dl2' .. 

XGO,2)(x(s-1)-x(s»(aVldaXl(s»D12 exp[ -!3HoJ 

( -13)8 
= (1I'!3-1)3N/2Q-l_- exp[ -!3HoJ<l1 G(l,2) 11) 

s! 

X f dx1dx2 exp[ -i1x12J( a[V12Jsjaxl)' V12· (11.4) 

On integrating by parts and taking into account 

we obtain 
( -13)8 

[P(l) (8)Jc --t (1I'!3-1)3NI2 __ Q-l exp[ -!3HoJ 
s! 

( -13)8 
= (1I'!3-1PNI2_- exp[ -!3HoJ 

s! 

(11.5) 

X f dX12V 128 exp( -i1x12) (11.6) 

in complete agreement with (8.9). 

12. APPROACH TO EQUILIBRIUM AT ORDER C2 

We shall first study the correlation between two 
particles 1 and 2. All our diagrams must contain, 
besides the particles 1 and 2, one dummy particle 3. 
To each diagram with s vertices will correspond an 
expression of the form 

X (av,j ax, (l»D'JG(l23) (x(l) -X(2» (av ki aXk (2» 

XD k1G(128) (x(2)_x(a» . .. (av mn/ aXm (8»Dmn 

Xexp[ -!3Ho], (12.1) 

where the V,/s, etc .... are either V12, V13, or V23 ac­
cording to the particular diagram we consider. 

As a matter of fact, when we consider a particular 
diagram, some of the integrals in (12.1) can be trivially 
performed. Indeed, in Fourier space, the wave vector 
k=O plays a special role. Equation (12.1) is a general 
expression which does not take account of this fact 

2 1 

A x=> 
, 2 

B~~~ 
1 3 

x=> 
3 I 

FIG. 11. All possible diagrams at the second vertex. 

explicitly; however, this can be done easily, taking 
into account the fact that if the n first vertices at the 
right involve only 2 particles, we can integrate immedi­
ately over the coordinates x/s-n)x/s-n-l) . .. x/s) of the 
third particle, taking into account 

f dx/dx/dxk'G(ijk) (Xi- X/, Xj-x/, Xk-Xk') 

X!(XiXjXkX/X,c') 

=.r dx/dxk'G(jk) (Xj-x/, Xk-Xk') 

X!(XiXjXkX/Xk'). (12.2) 

Similarly, if the dummy particle 3 disappears at the 
mth vertex, we can integrate immediately over 
Xa(l)· .. Xa(m-I). In each case, the 3-particles propagator 
reduces to 2-particles propagator to or from the vertex 
concerned. This corresponds to the fact that to or from 
that vertex we have only a 2-body interaction. 

Let us now consider more closely the structure of the 
diagrams. At the first vertex on the right, we can have 
any of the 3 interactions 12, 13, or 23. In each case we 
have 

-13 f dXl(s)dx2(s)dxa(8)G(123) (x(S-1)-X(8» 

X (aV mn/ aXm (8»Vmn exp[ -!3HoJ 

= -13 exp[ -!3HoJV mn(Xmn (8-1). (12.3) 

At any vertex k (2 ~ k ~ s- 2), we can subdivide the 
diagrams into three classes: 

A. 3 has not yet appeared in the diagram. 
B. 3 appears at the left of the diagram, being created 

at the kth vertex or earlier in the diagram. 
C. 3 has appeared in the diagram but has been 

destroyed either at the kth vertex or earlier in the 
diagram. 

All possible diagrams at the second vertex are given in 
Fig. 11. In Fig. 12 we give some examples of the 3 
classes of diagrams for k=4. 
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For the diagrams of class A at the second vertex, we 
obtain after integration over dx(s-l) 

For the eight diagrams of class B at tbe second vertex, 
we have 

x {VdX12(s-1)[(a V1./aXl (s-l»Vla 

+ (aV23/ aX2(s-l)r'23J+[V1a (Xl:t(.-!» 

+ VZ3 (X23(s-l» J[ (aV 12/ aXl (s-t)V12 

+ (a v la/ aXl (..-l»1'l:1+ (a v2a/ aX2(s-I»V2:1J} 

Xexp[ -f3HIl ] 

3 xn::: Vta/aXt(s-J)}{VIZ(V13+Vza) 
1=1 

+ (1/2!) (V1:1+ VZ3)2} x (.-l) 

= ... (_f3)2 exp[ -,BHo] { V12 (Vl3+ V23 ) 

+ (1/2!) (V 13 + Vn )2} X(·-2) 

= . " (_,B)2 exp[ -,BHoJ{ (1/2 !)(V12+ V13+ V23)2 

- (1/2!) V 122} x ( ... ,/). (12.5) 

For the two diagrams of class C at the second vertex, 
we have 

... (_f3)2 exp[ -(3Ho] J dX(8-1)G(128) (X(8-2)_X(8-1) 

x (V 23 (X23(s-l»[ av13/ aXl (3-1))'13+ VIa 

X [avn/ aX2(s-l)JVn} 

= ... (_,B)2 exp[ -f3HoJ{ V13 V23}x<,-'I. (12.6) 

We may notice that if s=2, these last two diagrams 
would be the only diagrams. In that case the lhs of 
(10.12) would have been 

(7r{r1)3N/20-2(1/ G(I,2) /1)( _(3)2 exp[ -,BHoJ 

x f dX1dx2dx. exp ( - ilx12) { V 23 (a V 13/ aXl)V13 

+ V 13(aV23/aX2)V23} 

= (7I'{3-1)3N/2n-1 (_,8)2 exp[ -(3HoJ 

x f dXI2 exp( -ilx12) J dX3 Via Vzs (12.7) 

2 1 2 1 AX=::X=X=> 
1 2 2 
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FIG. 12. Examples of diagrams at the fourth vertex. 

which agrees with (8.13) for s= 2 if we take into account 
the fact that 3 may be any of the (N - 2) particles of 
the system and we have to sum over all these possi­
bilities. 

The results (12.4)-(12.6) can be generalized for the 
three classes of diagrams at any vertex k (k ~ s- 2). 
One has for the diagrams at that vertex 

A. ( - ,B)k exp[ - {3H oJ (1/ k !) V 12k, (12.8) 

B. (_f3)k exp[ -,BHoJ(1/kl) 

X {(V12+ Vla+ V23)k- Vlzk} 

k-l 1 
= (_{3)k exp[ -,BHa] :E V12 P 

p=op!(k-p)! 

X (V1a+ V23)k-p , (12.9) 

k-2 1 
C. (-{3)k exp[ -f3HoJ :E V 12 P 

p=oP!(k-p)! 

X {(V I3+ V23)k-p - (V13k-p+ V2i'""'p)} , (12.10) 

where all Vij have to be taken at the point x corre­
sponding to the (k+ l)th vertex. 

These results are easily understood. Equation (12.8) 
corresponds to the fact that up to the kth vertex, we 
.have only had a 2-body (1.2) interaction. This result 
is straightforward and has been established at order C. 
Equation (12.9) corresponds to the fact that in the 
diagrams of this class we may at any vertex use any of 
the interactions 12, 13 or 23 provided we use 13 or 23 
at least once (k- p ~ 1 in the rhs). 

The first term in (12.10) corresponds to the fact that 
in the diagrams of this class, we may also use at any 
vertex any of the interactions 12, 13, or 23 provided 3 
has been used at least twice (k- p ~ 2). The terms 
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For the eight diagrams of class B at tbe second vertex, 
we have 

x {VdX12(s-1)[(a V1./aXl (s-l»Vla 

+ (aV23/ aX2(s-l)r'23J+[V1a (Xl:t(.-!» 

+ VZ3 (X23(s-l» J[ (aV 12/ aXl (s-t)V12 

+ (a v la/ aXl (..-l»1'l:1+ (a v2a/ aX2(s-I»V2:1J} 

Xexp[ -f3HIl ] 

3 xn::: Vta/aXt(s-J)}{VIZ(V13+Vza) 
1=1 

+ (1/2!) (V1:1+ VZ3)2} x (.-l) 

= ... (_f3)2 exp[ -,BHo] { V12 (Vl3+ V23 ) 

+ (1/2!) (V 13 + Vn )2} X(·-2) 

= . " (_,B)2 exp[ -,BHoJ{ (1/2 !)(V12+ V13+ V23)2 

- (1/2!) V 122} x ( ... ,/). (12.5) 

For the two diagrams of class C at the second vertex, 
we have 

... (_f3)2 exp[ -(3Ho] J dX(8-1)G(128) (X(8-2)_X(8-1) 

x (V 23 (X23(s-l»[ av13/ aXl (3-1))'13+ VIa 

X [avn/ aX2(s-l)JVn} 

= ... (_,B)2 exp[ -f3HoJ{ V13 V23}x<,-'I. (12.6) 

We may notice that if s=2, these last two diagrams 
would be the only diagrams. In that case the lhs of 
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(7r{r1)3N/20-2(1/ G(I,2) /1)( _(3)2 exp[ -,BHoJ 

x f dX1dx2dx. exp ( - ilx12) { V 23 (a V 13/ aXl)V13 

+ V 13(aV23/aX2)V23} 

= (7I'{3-1)3N/2n-1 (_,8)2 exp[ -(3HoJ 

x f dXI2 exp( -ilx12) J dX3 Via Vzs (12.7) 

2 1 2 1 AX=::X=X=> 
1 2 2 

3 

~
31 2 I 

81 
2 ~ 

I 2 3 2 

~
3 3

12 
I 3 

2 ~2 ) 3 
1 2 

1 

c~ ~ 
3. 2 2 1 

1 

~ 
~ XZ> 

3 

FIG. 12. Examples of diagrams at the fourth vertex. 

which agrees with (8.13) for s= 2 if we take into account 
the fact that 3 may be any of the (N - 2) particles of 
the system and we have to sum over all these possi­
bilities. 

The results (12.4)-(12.6) can be generalized for the 
three classes of diagrams at any vertex k (k ~ s- 2). 
One has for the diagrams at that vertex 

A. ( - ,B)k exp[ - {3H oJ (1/ k !) V 12k, (12.8) 

B. (_f3)k exp[ -,BHoJ(1/kl) 

X {(V12+ Vla+ V23)k- Vlzk} 

k-l 1 
= (_{3)k exp[ -,BHa] :E V12 P 

p=op!(k-p)! 

X (V1a+ V23)k-p , (12.9) 

k-2 1 
C. (-{3)k exp[ -f3HoJ :E V 12 P 

p=oP!(k-p)! 

X {(V I3+ V23)k-p - (V13k-p+ V2i'""'p)} , (12.10) 

where all Vij have to be taken at the point x corre­
sponding to the (k+ l)th vertex. 

These results are easily understood. Equation (12.8) 
corresponds to the fact that up to the kth vertex, we 
.have only had a 2-body (1.2) interaction. This result 
is straightforward and has been established at order C. 
Equation (12.9) corresponds to the fact that in the 
diagrams of this class we may at any vertex use any of 
the interactions 12, 13 or 23 provided we use 13 or 23 
at least once (k- p ~ 1 in the rhs). 

The first term in (12.10) corresponds to the fact that 
in the diagrams of this class, we may also use at any 
vertex any of the interactions 12, 13, or 23 provided 3 
has been used at least twice (k- p ~ 2). The terms 
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FIG. 13. Illustration of Table I. 

which are subtracted correspond to diagrams which 
give a vanishing contribution. This can be easily 
understood. Indeed, in any of the corresponding 
diagrams, 3 has interacted with only one of the 2 fixed 
particles. As 3 will no longer playa role in the diagram, 
such terms should lead to cluster diagrams with that 
fixed particle being an articulation point. 

In order to prove (12.9) and (12.10) we shall assume 
these results to be true at the kth vertex and prove them 
for the (k+l)th vertex. (We have already shown they 
are true for k= 2.) To do this, we first have to see what 

Class of diagram 
at the kth 

vertex 

A 

B 

C 

TABLE I. 

Interaction used 
at the (k+ l)th 

vertex 

1-2 
1-3 or 2-3 

1-2 
1-3 or~2-3 

1-2 

Class of the diagram 
obtained at the 
(k+l)th vertex 

A 
B 

B 
B or C 

C 

happens to any of the diagrams obtained at the kth 
vertex when we add one interaction. This is given in 
Table I. 

Let us consider a diagram of class B to which we add 
for instance an interaction 1-3. Then, depending on 
whether we choose vertices of the type (b), (f) or the 
type (d), (e) (see Fig. 1) we obtain a diagram of class 
B or C, respectively. In the case of the vertices (b), 
(f), the particle 3 remains at the left of the diagram and 
we obtain a diagram of class B. In the case of the vertex 
(d) or (e), this particle disappears from the diagram and 
we obtain a diagram of class C; however, whereas in 
the case B --7 B we can use any of the interactions 1-3 
or 2-3, this is true for the case B --7 C only if both 
particles 1 and 2 are already present in the diagram at 
at the kth vertex. If only 1 (2) is present at this kth 
vertex, the k first interactions were 1-3 (2-3) and we 
may use only 2-3 (1-3) to destroy 3. Examples are 
given in Fig. 13. 

To the diagrams of class B at the (k+l)th vertex 
corresponds the expression 

k-l 1 
+ (aV 2:/aX2(,-k-l))D23]+L: --­

p=op!(k-p)! 

X V 12P(Vl3+ V 23)k-p [ (aVl2/ aXl (·-k-l)Dl2 

Xexp[ -f3Ho] , (12.11) 

where the first term corresponds to the diagrams of 
class B obtained from diagrams which were of class A 
at the kth vertex and the second from diagrams which 
were already of class B at the kth vertex. 
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may use only 2-3 (1-3) to destroy 3. Examples are 
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corresponds the expression 

k-l 1 
+ (aV 2:/aX2(,-k-l))D23]+L: --­

p=op!(k-p)! 
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where the first term corresponds to the diagrams of 
class B obtained from diagrams which were of class A 
at the kth vertex and the second from diagrams which 
were already of class B at the kth vertex. 
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Equation (12.11) can be rewritten as 

... (_{3)k+l exp[ -{3Ho] 

3 

X(L: Vt'ajaXt(s-k-I»V12 P 
1=1 

k-l 1 3 

+L: V I2 P(L: Vt'a/ax/s-k-l» 
p~o p !(k- p-1)! t=l 

X (V13+ V23 )k-p-1 } 

= ... (_{3)k+1 exp[ -{3Ho] f dX(s-k-1) 

3 

XG(l23) (X(s-k-2) _X(s-k-I» (L: VI' a/ aXI(s-k-J) 
1=1 

k 1 
x[L: V 1Z p(V1:l+ V 23 )k-p+1] (12.12) 

p=op!(k-p+l)! 

which, after performing the integrations in the usual 
way, gives (12.9) for k ~ k+ 1. 

We still have to consider the diagrams which are of 
class C at the (k+l)th vertex. As we have seen, some 
conditions must be taken into account when these 
diagrams are obtained from diagrams which were of 
class B at the kth vertex. We can do this in the following 
way: use both interactions 1-3 and 2-3 at the (k+ l)th 
vertex and subtract from the diagrams obtained in this 
way the diagrams obtained by using an interaction 1-3 
(2-3) for a diagram for which the k first interactions 
were 1-3 (2-3) only. The expression for the diagrams 
of class C at the (k+ l)th vertex will then be 

•.. ( - {3)k f dX(s-l-k)G(123) (X(s-2-k) - X(s-I-k» 

X{I:l 1 VI2P(V13+V23)k-p 
p=op!(k-p)! 

X[ (aV 13/ aXl(s-k-l»DI3+ (aV 23/ aX2(8-k-I)Dz3] 

- (1/k !)[Vll(aV13/ aXI(8-k-I»D13 

+ V23k (a V 23 jaX2 (s-k-I»D23 ] 

k-2 1 
+ L: V I2P[(V13+ Vn)k- p- V 13k-P 

p-o P!(k-p)! 

- V 2l-p J X (a V 12/ aXI (s-k-J) )D12 } exp[ - {3H oJ 

= ... (_{3)k+1 exp[ -{3Ho] f dX(s-k-1) 

XG(123) (X(s-k-2) _ X(s-k-l) 

X ct VI' a/ aXt(s-k-l» {I:I 1 
1=1 p=o P!(k-P+l)! 

XV IZ P[(VI3 + V 23 )k-p+1- V I3k-p+l- V2l-P+I]} 

+ ... (_{3)k+1 exp[ -{3HoJ f dX(s-k+l) 

{ 

k-l 1 
XG(l23) (X(s-k-2)_X(8-k-J) L: V 12 P 

p=1 P!(k-p+1)! 
3 

X (L: VI' a/ ax/s-k-l» 

The second term in the rhs of (12.13) vanishes. Indeed, 
as we deal with diagrams of class C, particle 3 will no 
longer appear after the (k+ l)th vertex. Therefore, in 
(12.11), we could have integrated over all dXa(i), 
1 ~i ~s-k-2. 

The second term in the rhs of (12.13) can be written 

f dXl (s-k-l)dx2 (s-k-l)dxa (s-k-!)G(l2) (X(8-k-2) _X(s-k-!)} 

k-l 1 3 

+ L: V 12 P(L: vI·a/aXt(s-k-l» 
p=l P!(k-p+l)! 1=1 

X (Vll-p+l+ V23k-P+I). (12.14) 

Let us for instance consider the first term and take as 
integration variables 

R = [Xl (.-k-l) +X2(.-k-l) +Xa (s-k-l)]/3, 

X12 = Xl (.-k-I) - X2(8-k-l) ; XI3 = Xl (8-k-l) - X3 (s-k-l). 

Integrating over the center of mass, we obtain 

f dXI2G(12) (X12 (s-k-2) - X12) I:l 1 V lZP 
p=1 p!(k-P+l)! 

X f dXla(V13' a/aX 13)V13k-P+1=0. (12.15) 

The first term in the rhs of (12.15) can be dealt with in 
the usual manner and gives simply (12.10) for k~k+1. 

We can go on with this procedure; however, we are 
interested in the diagrams with s vertices which con­
tribute to the Fourier coefficient describing a correlation 
between two particles 1 and 2. This means that at the 
sth vertex, we only have to consider the diagrams of 
class C. Therefore, we obtain as our net result an 
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expression similar to (10.20): 

[P(l) (s)]c'--> (1I"~-1)3N/2NQ-2( -ms exp[ -~Ho] 

X (Ii G(12) it) f dx1dx2dx3 exp( -ilxI2) 

xci:, Vt.a/aXt){ 2:~ 1 VI2P[(V13+V23)s-P 
t~1 ,,~o P!(s-p)! 

- V1as-P- V23 S
- P]} 

=C(1I"~-1)3N/2( -~)., exp[ -~Ho] 

XfdX l2 exp( -iIXI2){ 2:2 

1 Vl2 P 

p~oP!(s-p)! 

X J dXa[(V 1a+ V2a )s-p- V13'-P- V 23s-P] } 

=C(1I"~-1)3N/2( -m' exp[ -~Ho] 

in complete agreement with (8.13). 

(12.16) 

In order to have a complete H theorem at order C2, 
we still have to show that the triple correlation 1-2-3 
reaches the correct value. This can be done in the same 
way. In this case, particle 3 is no longer a dummy 
particle and therefore we must exclude all diagrams of 
class C. At the sth vertex, we have only diagrams of 
class B with the condition that the three particles 1-2-3 
are present. Such a condition can be taken into account 
in a way similar to that used previously when building 
diagrams of class C from diagrams of class B. 

We shall not establish the H theorem at higher 
orders in C. All characteristic features have now been 
introduced. For each of the particles 3·· ·k-1, one 
must define the class Bi and C. If we consider for 
instance the contribution to the pair correlation at 
order C\ we have (k-1) dummy particles and the 
diagrams we have to consider at the sth vertex are of 
the type C3C4 • • ·Ck- l • Therefore, from each of those 
particles start at least two bonds. Moreover particles 
1 and 2 must have interacted at least with one of the 
dummy particles in order to be at the left of the 
diagrams. Therefore they are connected to the other 
particles in the cluster diagrams. 

To prove the H theorem, we should still show that 
diagrams which correspond to cluster diagrams with an 
articulation point give vanishing contributions. Let us 
consider the physical meaning of such diagrams. All 
the dummy particles which are in the appending part of 
the diagram have interacted among themselves and 

with only one of the particles which form the main part 
of the diagram. This part of the diagram plays no role 
in the building of the correlation 1-2. It essentially 
corresponds to a scattering process. Now, we have seen 
that such scattering processes are effective in the 
establishment of the correct velocity distribution 
function but become ineffective once this is achieved 
which is precisely the situation we are dealing with: 
Therefore, we may really expect that such diagrams 
will give a vanishing contribution and that the only 
diagrams which give a non vanishing contribution are 
those where each dummy particle plays a role in the 
building of the correlation. Such diagrams precisely 
correspond to the irreducible cluster diagrams. In fact, 
each of these cluster diagrams corresponds to several 
creation fragments, this being due to the various possible 
chronological orders of the interactions involved. 

13. CONCLUSIONS 

We have seen that the equations which describe the 
evolution of the system are such that all physical quan­
tities which are functions of a finite number of degrees 
of freedom will reach the correct equilibrium value 
after a long time. This is a remarkable extension of 
Boltzmann's H theorem. Whereas Boltzmann's H 
theorem is concerned only with the reduced velocity 
distribution function /I, our proof takes also into 
account the correlations between the particles ,intro­
duced by their mutual interaction energy. Therefore 
our proof is valid for space-dependent quantities too. 
We want to stress the fact that the proof given in the 
foregoing is based upon very few hypotheses. 

These hypotheses concern the class of initial dis­
tribution functions we consider. Two aspects are 
involved: first, the dependence with respect to the 
number of particles and the volume; secondly, the 
dependence with respect to the coupling constant A. 
The first one is in fact all that is needed to establish 
the general H theorem. Indeed, if we modify the A 
dependence in the initial conditions, we shall modify 
the order with respect to A of all the diagrams which 
d.o no~ involve poet) ;.however, their asymptotic proper­
tIes WIll not be modIfied by this procedure. Therefore 
the only hypothesis involved in the proof of the general 
H theorem is the dependence with respect to Nand Q 
o.f the distri?ution fu~ction. This hypothesis has a very 
sl~ple phySICal mea~mg: extensive and intensive prop­
ertIes of the system m the thermodynamical sense may 
be define? fro~ the initial state. This indeed corresponds 
to the sltuatlOn encountered in a large number of 
physical systems. This hypothesis is far less restrictive 
than those used in equilibrium theory.lo There, in order 
to obtain the equilibrium distribution for functions of 
a finite number of degrees of freedom, one has to 
specify the distribution function for the entire system 

10 A. Khinchin, M athemalical F ottndations of Statistical Mechanics 
(Dover Publications, New York, 1949). 
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H theorem is the dependence with respect to Nand Q 
o.f the distri?ution fu~ction. This hypothesis has a very 
sl~ple phySICal mea~mg: extensive and intensive prop­
ertIes of the system m the thermodynamical sense may 
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10 A. Khinchin, M athemalical F ottndations of Statistical Mechanics 
(Dover Publications, New York, 1949). 
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(microcanonical distribution). Although our results are 
equivalent with those of the equilibrium theory, we 
never need such a specification of the complete dis­
tribution function. 

In fact, the behavior of this function is always 
described by the Liouville equation; however, no matter 
how complicated this behavior may be, whenever 
intensive properties in the thermodynamical sense may 
be defined, our results will be valid. 
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APPENDIX-ASYMPTOTIC TIME INTEGRATIONS 

1. Resolvent Operator 

Let us give here a method which allows a derivation 
of the theorems stated in Sec. 4 in a very compact and 
elegant way. 

We start from the Liouville equation 

iiJp/ iJt= Lp= (Lo+ML)p. (AI) 

We define a resolvent operatorll (L-Z)-l, which is a 
function of the complex variable z. It is known (see 
Stone12) that this resolvent is bounded for nonreal z. 
The formal solution of (AI) may obviously be written 
as 

Ie 
e-izt 

pet) = - (211'i)-1 dz-p (0) , 
c L-z 

(A2) 

where the contour C is shown in Fig. 14. We may also 
introduce a resolvent (LO-Z)-1 for the unperturbed 
Liouville operator Lo. On using the identity 

A-l_B-l=A-l(B-A)B-l, (A3) 

we may write 

'L-Z)-I= (LO-Z)-I_X(Lo-z)-l(jL(L-z)-t, (A4) 

or, by an iterative procedure (assuming that the series 
converges), 

00 

(L-Z)-l= L (_x)n(Lo-z)-loL(Lo-z)-l]n. (AS) 
n=O 

If we express our formal solution, given by (A2) and 
(AS), in the Fourier representation of the N particle 
system, we obtain 

PfkJ({V},t)=-(211'i)-lfdzexpC-iZI) E £ (-x)n 
(k'l n=O 

X({k} I (Lo-z)-I[oL(Lo-z)-l]nl (k'}) 

XPfk'l({V},O). (A6) 

11 L. Van Hove, Physica 21, 901 (1955). 
12 M. H. Stone, Linear Trans/fYI'malion in Hilbert SPace (Amer­

ican Mathematical Society, New York, 1932). 

FIG. 14. Contour 
for (A2). 

Z Plane 

\Ve notice that in Fourier space, the resolvent of the 
unperturbed system is diagonal 

We may thus associate the same diagrams to Eq. (A6) 
as we did for the iterative solution of (2.6), the only 
difference being that to each state {k} (final, inter­
mediate or initial) we associate a "time independent 
propagator" [Ei kjVj-Z]-l instead of the oscillating 
exponentials exp[i Lj kjvj(l,,-ln-l)]. 

The analysis of the asymptotic behavior for long 
times of the different contributions involved in (A6) 
will give us a simple and rigorous proof of the theorems 
of Sec. 4. Let us first study in great detail two particular 
examples. 

2. -Cycle and Free Propagation 

(a) The contribution to (A6) corresponding to a 
cycle is 

¢ = - (211'i)-lf dz 

Xexp( -izt){X2 L Z-l(OI oLlm I (k}) 
{kl 

Let us consider the expression 

X({k} loL1mI0). (A9) 

On using (2.7) and replacing the sum over {k} by an 
integral, we immediately obtain 

Ijt(z,{v}) = - (811'30)-lf d3kVk k· DIm 

X[k· Vlm-Z]-lV _kk· Dim. (AlO) 

We choose a system of cylindrical coordinates for k, 
with polar axis directed along Vim; we may then bring 
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this integral to the general form 

J
a> few) 

<p(Z) = dw-, 
-00 w-z 

(All) 

which is known as a Cauchy integral13 ; one of its 
fundamental properties is given by the following 
theorem: if few) satisfies the Lipschitz condition 

IJ(Wl)- f(w2)! ~Clwl-w21"', (0 ~Q!<l), (AI2) 

<p(z) is an analytic function of z in the upper and in the 
lower half-plane, except for a finite discontinuity along 
the real axis. 

We shall always assume that the integrand of (AIO) 
satisfies the required conditions and we shall denote by 
If+(z,{'lI}) the integral calculated for Imz>O. 

We shall also suppose that If+(z,{'lI}) has an analytical 
continuation in the lower plane; this continuation is of 
course not identical to the function lft-(z,{v}) defined by 
(AIO) when Imz<O; on the contrary, it will have poles 
in this part of the complex plane; these poles will be 
situated at points such that Imz ~v' ii; where i-I is some 
characteristic length, of the order of the range of the 
forces V(r),14 

For t>O, the integral on the semicircle at infinity 
gives no contribution, and we may write for (A8) 

I 9 = - (21ri)-r)..2! dzr2 

Xexp( -izt)4'+(z,{ 'lI})po({ v},O), (A13) 

where we use for lft+(z) in the lower half-plane the 
analytical continuation of (AlO) calculated for Imz>O. 

We may now perform the z integration, applying the 
residue theorem 

(21ri)-1! fCz)dz= L (Res fez) inside the contour). 

(A14) 

We get, in this case, a second-order pole at z=O and 
poles arising from the function lft+(z,{v}) at points in the 
lower half-plane 

I <=> = -iV{ -itlft+(O,{V}) +1ft'+ (O,{v}) 
m 

+ Li Zi-2 exp( -izit)[Res4'+(z)],=zi}. (A1S) 

Let us point out that formula (AIS) is still exact; no 
asymptotic estimations have been made. If we now use 

13 N. 1. Muskhelishvili, Singular Integral Equalions (Noordhoff­
Groningen, 1953). 

14 The reader may verify these statements by evaluating the 
the integral (AlO) with a typical potential; for instance, with 
V(r)=exp[-Kr], whose Fourier transform is Vk=87rKj(K2+k2)2. 

the fact that the poles Zi of If+(z,{'lI}) are such that 

(A16) 

for times t much larger than the duration of a collision, 
we have 

(Imzi)t~ii;· vt»t, (AI7) 

and we are thus left with a contribution which grows 
asymptotically as t. 

More precisely, 

! o =-)..2iI1ft+(0,{v}) (A18) 
m 

=)..2(81r3Q)-lt J d3k I Vk 12k. Dtm[1rcL(k. Vim)] 

Xk· D1mPo({v},0) (AI9) 

using well-known formulas for Cauchy integrals [see 
footnote reference 13 and (A26)]. This is exactly the 
result which was obtained in footnote reference 1 by 
studying the asymptotic behavior of oscillating expo­
nentials, which we never encounter in this method. Let 
us point out that the advantage of the proof presented 
here is essentially related to the fact that we first per­
formed (in a formal way) the summation over the k 
vector (getting an integral of the Cauchy type) and then 
evaluated the z integral; had we calculated the z 
integral first, we would have been left with the oscil­
lating factors. 

(b) Let us consider the case of the "free propagation" 
of a correlation 

; = - (21ri)-1! dz exp( -izt)[kvafj-ZJ-l 

XPk".-k/i({V},O). (A20) 

Clearly, in this form, there is no k integration; however, 
if we realize that we are actually interested in the dis­
tribution function in phase space, i.e., in 

PO) (Xafj ; {v} ; t)", - (21ri)-lf dz exp( -izt) 

XLk exp(ikxafj)[kv",fj-z]-lpka.-k/i({V},O), (A2l) 

it is tempting to interpret the k integral as we did in 
the case of the cycle; but this would now imply assump­
tions about the locations of the poles of Pk",. -kfj [see 
(A16)] and would be a much too restrictive choice of our 
initial conditions. 

In fact, we want to study the reduced distribution 
functions of our system for small distances Xafj in the limit 
of long times. But we want to be able to study initial 
conditions in which the range of correlations is arbitrary. 
(For the other restriction, see the discussion in Sec. 13.) 
We are thus obliged in this case to treat the z integral 
exactly and then to perform the summation over k~ 
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we then obtain 

PO) (xaP; {v} ; t),,-, Lk exp[ik(xaP- vapt)J 

Xpka,-k{J({V},O), (A22) 

which gives an exact description of the free propagation 
of the two particles involved. 

It is now clear that if we want to be consistent, in any 
diagram where we have one particle which propagates 
through the whole time interval 0 ~ t, we shall have 
to treat it exactly. This is why we have used the "sub­
traction" procedure in Sec. 4 before giving the general 
theorems on time integration. 

The easiest way to make this subtraction in the 
resolvent method (neglecting here the problems of com­
mutations which have been discussed in footnote refer­
ence 2) is to use a change of variables in (A6); we put 

(A23) 

where the summation extends over all particles a which 
propagate through the whole diagram and where ka is 
the total momentum of the disconnected part which 
involves this particle a; (A6) then becomes 

Plkl ({ v},t) = - (Z,ri)-I exp[ -i L' kavatJ 

XL t (-X)ll! exp( "-iz't)dz' 
(k'\ n=O 

X({k} I (Lo'-z')-I[OL(Lo'-z')-IJn/ {k'}) 

with 
XPlk'I({v},O), (A24) 

Lo'=Lo- L' kava. (A2S) 

3. General Theorems 

We can now generalize the argument of the preceding 
section to the most complicated cases; however, as we 
have learned how to deal with propagation diagrams 
and how to reduce them by (A23) to a basic structure 
(see Sec. 4) without propagation, we shall only consider 
the latter case. 

We follow the general procedure: 
(1) Write down the contribution of a given diagram 

in the resolvent formalism. 
(2) Evaluate then all possible summations (in a 

formal way) over k vectors (or eventually over v 
vectors) in order to get an integral of the Cauchy type 
1J;+(z). 

We always assume that these generalized Cauchy 
integrals may be continued analytically in the lower 
half-plane but their poles Zi satisfy (A16). 

(3) Then perform the z integration, keeping only the 
contributions coming from the poles on the real axis 
[in fact at z=o when we use (A24)J, which have not 
been eliminated by the Cauchy integrations. 

(4) Interpret ¢-+(O) applying the well-known repre­
sentation of the L(x) function 

1TL(x) = 1/i(x-i~). (A26) 

We can then readily prove our general theorems by 
induction; however we shall only give here typical 
examples: 

(A) A single diagonal diagram gives an asymptotic 
contribution of maximum order t. Consider the following 
case: 

a¢>a = _ (21Ti)-I! dz exp( -izt)g-4 

XLk Ll z-liVkk· Da1[k· Val-ZJ-1iV11· Da; 

X[k· val+l· va;-ZJ-l( -i) V-11·Dai 

X[kVal-ZJ-I( -i)V _kk· Da1z-IpO({V},0). (A27) 

Performing formally the summations over k and I we 
are left with a second-order pole at z=o and we thUS' get 
in the limit of long times, a contribution of order t; we se~ 
clearly in this example the compactness of the method 
compared to the study of the asymptotic behavior of 
oscillating exponentialsl ; however, the latter demon­
stration is more intuitive and requires a simpler mathe­
matical technique. 

The generalization to a diagonal fragment [O(t)J or 
to a succession of diagonal fragments is trivial; whenever 
we add a diagonal fragment we get a new :;--1 factor and 
thus a supplementary t factor: 

(B) A succession of m diagonal fragments gives an 
asymptotic contribution of order tm. 

(C) The destruction of a correlation followed by m 
successive diagonal fragments gives asymptotically a 
contribution of maximum order tm 

For instance, a n 
CJ C = - (21Ti)-I!dZ 

I a 

Xexp( -izt)g-3 Lk Ll z-liVkk· Dal 

X[k· Val-ZJ-I( -i)V-kk· Da1z-1iV11· Dan 

X [I· Van - Z jlP1a, -I n. (A28) 

All propagators except the two poles at z=O may be 
included in the generalized Cauchy integral obtained 
by summing over k and I. There remains a double pole 
at z=O which gives a t factor. The proof for any de­
struction fragment followed by n diagonal fragments 
runs along the same lines. 

(D) The creation of a correlation preceded by m 
diagonal transitions gives asymptotically a contribution 
of order tm. Consider the following diagram: 

ark) a(-k) => <=> = - (21Ti)-lX3!dZ exp( -izt) 
j3(-k) l(k') 

xn-3 Lk{k· vaP-z]-liVkk· Dapz-1iVk,k'· Dat 

X[k'· Val-ZJ-I( -i) Vk,k'· Da1z-'po({ v},O). (A29) 
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1TL(x) = 1/i(x-i~). (A26) 

We can then readily prove our general theorems by 
induction; however we shall only give here typical 
examples: 

(A) A single diagonal diagram gives an asymptotic 
contribution of maximum order t. Consider the following 
case: 

a¢>a = _ (21Ti)-I! dz exp( -izt)g-4 

XLk Ll z-liVkk· Da1[k· Val-ZJ-1iV11· Da; 

X[k· val+l· va;-ZJ-l( -i) V-11·Dai 

X[kVal-ZJ-I( -i)V _kk· Da1z-IpO({V},0). (A27) 

Performing formally the summations over k and I we 
are left with a second-order pole at z=o and we thUS' get 
in the limit of long times, a contribution of order t; we se~ 
clearly in this example the compactness of the method 
compared to the study of the asymptotic behavior of 
oscillating exponentialsl ; however, the latter demon­
stration is more intuitive and requires a simpler mathe­
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The generalization to a diagonal fragment [O(t)J or 
to a succession of diagonal fragments is trivial; whenever 
we add a diagonal fragment we get a new :;--1 factor and 
thus a supplementary t factor: 

(B) A succession of m diagonal fragments gives an 
asymptotic contribution of order tm. 

(C) The destruction of a correlation followed by m 
successive diagonal fragments gives asymptotically a 
contribution of maximum order tm 

For instance, a n 
CJ C = - (21Ti)-I!dZ 

I a 

Xexp( -izt)g-3 Lk Ll z-liVkk· Dal 

X[k· Val-ZJ-I( -i)V-kk· Da1z-1iV11· Dan 

X [I· Van - Z jlP1a, -I n. (A28) 

All propagators except the two poles at z=O may be 
included in the generalized Cauchy integral obtained 
by summing over k and I. There remains a double pole 
at z=O which gives a t factor. The proof for any de­
struction fragment followed by n diagonal fragments 
runs along the same lines. 

(D) The creation of a correlation preceded by m 
diagonal transitions gives asymptotically a contribution 
of order tm. Consider the following diagram: 

ark) a(-k) => <=> = - (21Ti)-lX3!dZ exp( -izt) 
j3(-k) l(k') 

xn-3 Lk{k· vaP-z]-liVkk· Dapz-1iVk,k'· Dat 

X[k'· Val-ZJ-I( -i) Vk,k'· Da1z-'po({ v},O). (A29) 
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As long as we remain in Fourier representation, we 
have no summation which allows us to bring the first 
propagator in an integral of the Cauchy type; however, 
as we have already noticed earlier [see (A2l)], we are 
interested in distribution functions in ordinary space. 
We thus must multiply (A28) by exp(ik·x,,~) and sum 
over k. If we are only interested in small values of x,,~ 
(i.e., of the order of the molecular correlation length), 
conditions (Al2) and (Al6) are both satisfied and we 
may include the propagator in a Cauchy integral over 
k. The double pole at z=O remains and accordingly we 
get a t factor. 

(E) Irreducible destruction-creation fragment: the 
physical meaning of (A28) and (A29) is clear. As 
explained in the text, a destruction (a creation) frag­
ment is an almost instantaneous event which takes 
place at time t' = 0 (t' = t). It is then clear, and this 
could be confirmed by a detailed calculation, that a 
diagram such as those given in Fig. 5 could not pos­
sibly give any time growing contribution. The same 
property may also be verified for any destruction 
diagram which corresponds to initial and final state 
with {k;}~O. 

Combining the proofs (A)-(E), we immediately 
obtain our basic theorems I and II of Sec. 4. 

N oie added in proof. One of us (P.R.) has recently 
generalized the method used in this (as well as in the 
preceding) paper to obtain an H theorem valid in both 
cases to all powers of the concentration or the coupling 
constant. This method applies as well to the quantum 

case. A preliminary paper has been presented to publi­
cation to the Phys. Rev. Letters. On the other hand, 
the proof that the correlations reach their equilibrium 
value once the velocity distribution is the equilibrium 
one, can be greatly simplified, as has been shown by 
one of us (F.A.). 

We also want to make the following remarks about 
asymptotic time integration: the procedure to be used 
depends, in a sense, upon the type of quantities whose 
time evolution is considered. One may be interested in 
the time evolution of phase correlations in Fourier space 
(irrespective of the distance between the particles), 
in which case the asymptotic time integration cannot 
be applied to the last creation fragment. Another limit­
ing situation corresponds to the time evolution of quan­
tities which drop out to zero at large intermolecular 
distances (as do all thermodynamic properties, for ex­
ample). We then have an integration over the whole 
set of Fourier components. The oscillating sum 

decays to zero after times of the order of a collision 
time (for molecular correlation). In a sense, whenever 
one wants to go beyond the usual Boltzmann kind of 
equation, the kinetics of the approach to equilibrium 
depend on some general characteristics of the initial 
state (for example on the range of the correlations), but 
in all cases, for sufficiently large times, complete sta­
tistical equilibrium is reached. These problems will be 
considered in detail in a separate publication. 
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We find the evolution equation for a singlet distribution function in a fluid containing macroscopic 
inhomogeneities. The equation, a generaliz.ation of the Boltzmann equation, derived from the Liouville 
equation, may be written formally to any order in either concentration or strength of interaction. We find 
/1 to be a functional only of itself and other/l's. We then show that initially present correlations are destroyed 
during the same relaxation time as in homogeneous systems. We can then write formally to any order the 
equation for a reduced s-particle distribution function/., which proves to be a functional of a product of/t's, 
all the time dependence of the /. being lodged in the It's for times greater than the relaxation time. 

1. INTRODUCTION 

RECENTLY Prigogine and co-workers have pre­
sented a perturbation method of solving the 

Liouville equation in the limit of infinite volume and 
number of particles, but finite concentration.l-4 This 
method utilizes a diagram technique for evaluating the 
magnitudes of the contributions to various Fourier 
components of the distribution function. With these 
techniques, Prigogine and Henin5 have studied the 
approach to equilibrium in solids, and Henin, Resibois, 
and Andrews4 the approach to equilibrium in homo­
geneous fluids. This latter work shows that all the 
classical results of equilibrium statistical mechanics may 
be considered as the natural outcome of the irreversible 
approach to equilibrium of a dynamical system. This 
is so to any order in any selected perturbation parameter. 

In this paper we wish to consider systems with a 
macroscopic inhomogeneity of the type discussed by 
Prigogine and Balescu.2 We study the time evolution 
of reduced distribution functions by the method given 
in footnote reference 4, and we learn that the approach 
to equilibrium of these systems may be considered a 
stepwise process characterized by the times th»tr»to, 
where th is characteristic of the hydrodynamical relaxa­
tion time, tr of the molecular relaxation time, and to of 
the collision time. We have then derived formally and 
given explicit expression to the ideas presented by 
Bogoliubov.6 
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2. EVOLUTION OF THE SINGLET 
DISTRIBUTION FUNCTION 

The singlet or reduced one-particle distribution 
function is defined in the usual mannerl- 3 by 

h(x",v",t) =C{po(v",t) 

+Q-I L: exp[ik· (x"-V"t)]Pk(V,,,t)} (2.1) 
k 

with the equation of change 

ah(a) ah(a) 
---+v,,'---

at ax" 

a~~) ~k~) 
=C-_+CQ-I L: exp[ik· (x"-v,,t)]--. (2.2) 

at k at 

Throughout this paper for a general wave vector n 
we shall use the notation k for macroscopic, i.e., small 
wave vectors and I for molecular, i.e., large, wave 
vectors.2 

We shall study the rhs of Eq. (2.2) when the time 
derivatives are caused by a particular diagonal po -> po 
skeleton operator, X~Il' whose diagram has 1/ vertices 
and involves fJ. different particles (fJ.~1/). X~1l will have 
arisen as one of the operators effective to the order of 
perturbation being taken (i.e., A ~t in weakly coupled 
systems, Gil-It in dilute gases, or a combination of 
these). Since we study the evolution of h(x",v",t), the 
last vertex on the left of X~1l "destroys" particle a. There 
must be in X~1l both a creation and a destruction vertex 
for each of the f.L particles. In addition to X~Il' we must 
consider the entire set of "pseudodiagonal" operators 
formed by adding to the left of X~1l a weak correlation 
line (with small propagation vector characteristic of 
macroscopic inhomogeneities) for particle a and going 
to the right any combination of weak lines coming from 
creation vertices for any particles being created. 

This set of operators contains X~!, acting on 

!' 

II PO(Vi); 
i=l 
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then the J.I. different terms 

p 

X~p II po (Vi)PI (f), 
i=1. "'i 

where f is the particle whose weak propagation line 
goes to the right, the term also containing a weak a 
line going to the left; then the J.I.(J.I.-l) different terms 

P 

X~IS II PO(Vi) II PI(j) , 
i=I,"'lrJ j=ltj 

where {f} is the set of two particles whose weak propa­
gation lines go to the right, the term of course also 
having a weak a line to the left; ... ; finally the term 

IS 

X~p II PI (j). 
j=I 

On substituting this set of terms into the rhs of Eq. 
(2.2), the exp( -ik· vat) in (2.2) cancels the exponential 
representing the weak a lines on the left of the operator 
terms. The exp(ik· xa) commutes with the entire 
<>perator, since it merely acts in velocity space. By 
conservation of wave vectors, this k may be equated 
to the sum of the wave vectors of the weak propagation 
lines on the right, and in the limit of infinite volume 
may be considered an integral over new variables of 
the form 

f II{dkrpkr(f) exp[ikr' (xa-vrt)]}· 
Ii) 

SO the combination of all the operators in the previous 
paragraph gives the rhs of Eq. (2.2) the form (omitting 
for the moment the integrals over velocities of the J.I. 
particles r!'a necessary to reduce the distribution 
function to a singlet function) : 

p 

Xexp[ikr · (xa-vrt)]+I: X~p II PO(Vi) 
lil i=I''''liI 

Since from Eq. (2.1), 

,. 
C-ISX~p II fr(Xa,Vi,t) 

i=l 

and since the expansion of the rhs of this yields (2.3), 
we may write the contribution to the rhs of Eq. (2.2) 
in the simple form 

Xfr(X;,v;,t)fr(Xa,Va,t), (2.4) 

where we have integrated over the velocities of the 
particles r!'a, and have symmetrized the result by 
inserting the delta functions and integrating also over 
positions. It is to be noted that the factor Cl-p is always 
canceled by a term 0-1 in X~p. But any term in (2.4) 
is proportional to 0 through the C dependence of the 
fr's. 

Equations (2.2) and (2.4) thus give a formal repre­
sentation of a "Boltzmann equation" to any order in 
either strength of interaction or concentration or both. 
In terms of operators it is easy to write, for example, 
the Boltzmann equation correct to order C(Ct)n: 

afrCa) afrCa) 
--+va '--

at aXa 

x (6+0+(::0 +EXJ+") O(Xa-Xi) 

XO(Xa-Xj)fr(i)fr(j)fr(a). (2.S) 

We have cancelled the powers of C in front of the 
integral with those in X~!" in order to display more 
clearly the C dependence of the rhs of Eq. (2.S). Similar 
extensions to higher order are obvious. 

3. DECAY OF INITIALLY PRESENT CORRELATIONS 

We omit from consideration those diagrams of any 
order which have a vertex located off the skeleton, e.g., 

Such diagrams always introduce a factor of the order 
of V kik· Dai times a slowly varying exponentiaL Even 
if such a contribution were multiplied by vi, the result 
would still be much less than unity, because of the 
fundamental assumption on the size of k,2 This con­
tribution could thus be thought of as giving an effective 
order 1-" i.e., negligible for long times. 

We now assert that initially present correlations in 

92 FRANK C. ANDREWS 

then the J.I. different terms 

p 

X~p II po (Vi)PI (f), 
i=1. "'i 

where f is the particle whose weak propagation line 
goes to the right, the term also containing a weak a 
line going to the left; then the J.I.(J.I.-l) different terms 

P 

X~IS II PO(Vi) II PI(j) , 
i=I,"'lrJ j=ltj 

where {f} is the set of two particles whose weak propa­
gation lines go to the right, the term of course also 
having a weak a line to the left; ... ; finally the term 

IS 

X~p II PI (j). 
j=I 

On substituting this set of terms into the rhs of Eq. 
(2.2), the exp( -ik· vat) in (2.2) cancels the exponential 
representing the weak a lines on the left of the operator 
terms. The exp(ik· xa) commutes with the entire 
<>perator, since it merely acts in velocity space. By 
conservation of wave vectors, this k may be equated 
to the sum of the wave vectors of the weak propagation 
lines on the right, and in the limit of infinite volume 
may be considered an integral over new variables of 
the form 

f II{dkrpkr(f) exp[ikr' (xa-vrt)]}· 
Ii) 

SO the combination of all the operators in the previous 
paragraph gives the rhs of Eq. (2.2) the form (omitting 
for the moment the integrals over velocities of the J.I. 
particles r!'a necessary to reduce the distribution 
function to a singlet function) : 

p 

Xexp[ikr · (xa-vrt)]+I: X~p II PO(Vi) 
lil i=I''''liI 

Since from Eq. (2.1), 

,. 
C-ISX~p II fr(Xa,Vi,t) 

i=l 

and since the expansion of the rhs of this yields (2.3), 
we may write the contribution to the rhs of Eq. (2.2) 
in the simple form 

Xfr(X;,v;,t)fr(Xa,Va,t), (2.4) 

where we have integrated over the velocities of the 
particles r!'a, and have symmetrized the result by 
inserting the delta functions and integrating also over 
positions. It is to be noted that the factor Cl-p is always 
canceled by a term 0-1 in X~p. But any term in (2.4) 
is proportional to 0 through the C dependence of the 
fr's. 

Equations (2.2) and (2.4) thus give a formal repre­
sentation of a "Boltzmann equation" to any order in 
either strength of interaction or concentration or both. 
In terms of operators it is easy to write, for example, 
the Boltzmann equation correct to order C(Ct)n: 

afrCa) afrCa) 
--+va '--

at aXa 

x (6+0+(::0 +EXJ+") O(Xa-Xi) 

XO(Xa-Xj)fr(i)fr(j)fr(a). (2.S) 

We have cancelled the powers of C in front of the 
integral with those in X~!" in order to display more 
clearly the C dependence of the rhs of Eq. (2.S). Similar 
extensions to higher order are obvious. 

3. DECAY OF INITIALLY PRESENT CORRELATIONS 

We omit from consideration those diagrams of any 
order which have a vertex located off the skeleton, e.g., 

Such diagrams always introduce a factor of the order 
of V kik· Dai times a slowly varying exponentiaL Even 
if such a contribution were multiplied by vi, the result 
would still be much less than unity, because of the 
fundamental assumption on the size of k,2 This con­
tribution could thus be thought of as giving an effective 
order 1-" i.e., negligible for long times. 

We now assert that initially present correlations in 



                                                                                                                                    

G ENE R A L THE 0 R Y 0 F THE A P PRO A C H TOE QUI LIB R I U M. I I I 93 

an inhomogeneous system decay during exactly the 
same molecular relaxation time as was found for 
homogeneous systems,4 i.e., we assert that the diagonal 
operator (cycle on a line) acting in the inhomogeneous 
case is just as effective in destroying correlations as it 
was in the homogeneous case. We give the proof for 
h' (a.(3) (in the notation of footnote reference 4), the 
proof for higher order correlations being then obvious. 

With the cycle on the line there is the possibility of 
particle i having wave vector initially either zero or of 
macroscopic size (pseudodiagonal) (see Diagram 1). 

01 

(a)~ (b) 

.i. 

DIAGRAM 1. Possible cycle on line diagrams which destroy 
initial correlations in inhomogeneous systems. The dashed line 
represents a "pseudodiagonal" propagation line. See Eq. (3.1). 

The sole question is whether both diagrams in Dia­
gram 1 destroy the initial correlation as quickly as 
Diagram 1 (a) alone does in the homogeneous case.4 Our 
proof follows closely that of footnote reference 4. Con­
sidering this combination, we are lead to the evolution 
equation (a similar operator involving particle (3 of 
course could be treated): 

01 

~Pll"(a.(3) 
;. 

X {po (i) +fr1 L Pk(i) exp[ik· (Xi-Vit)]} 
k 

01 

=~Pl1/(a.(3)h(i)C-\ 
;. (3.1) 

where the final replacement is made using Eq. (2.1). 
We know that h(i) changes only slowly with time 

= o (th»>t r in which we are interested. Thus h(i) may 
be considered constant in this proof. We define the 
function 

(3.2) 

Therefore, using Eq. (3.1), 

* aa~ ~ f dVpn!(.mJ'(ilC-'-O--

XPI1/(a.(3)*h(i)*C-l+ f dVPI1/(a.(3)*h(i)*C-1 

X -o-PII/(a.(3)fl(i)C-I, 

where we made use of the reality of h(i). Using the 
expression of the operator,t,3,4 this becomes 

X II"· Dai exp( -il· vat)pll" (a.(3)fl (i)C-112. 

By definition of relaxation time as the time during 
which initially present molecular correlations are 
adjusted, 

aEJ/at=o, t>tr. 
Therefore 

exp( -il· vat)Pll/ (a(3)h(i)G-I='P(H o)A (t,x) j 

t>tr (3.3) 
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Thus initially present correlations are destroyed in an 
inhomogeneous system by the same scattering mechan­
ism and during the same relaxation time as correlations 
in homogeneous systems. Only creation fragments4 can 
contribute to correlations after such a time. 

4. CORRELATIONS ARISING IN INHOMO­
GENEOUS SYSTEMS 

We define a reduced s-particle distribution function 
by 

. 8 

Xexp[in· (Xi-Vit)]+ I: II po (m)Q-2 

x I: Pnn' (ij) exp[in· (Xi- vit)+in'· (Xj- Vjt)] 
n,n' 

8 • 
+I: II po (m)Q-I I: Pn.-n(ij) 

i<;=1 m=l.~i,j n 

Xexp[in· (Xi-vit)-in· (Xj-Vjt)]+··· 

+n-' I: Pln,I({S}) exp[i 1: ni' (Xi-Vit)]}. (4.1) 
Ins} i-I 

We shall prove that for times t such that th>t>tr , Eq. 
(4.1) may be expressed as a complicated, but completely 
determined, functional of a product of singlet distri­
bution functions. Thus all the time dependence of (4.1) 
will rest in the individual h(i). 

The terms in Eq. (4.1) which contain only Pk'S and 
po's factorize.2 The terms left over have at least two 
molecularly correlated particles. For those with just 
two, the nonmolecularly correlated part again fac­
torizes. Similarly for those with just three, etc. We can 
write 

8 8 

j8=II h (i) +C2 I: G2(ij)] II ll(n) 
i=l i<j=l n=l,~i.j 

8 

+0 I: Ga(ijm) II h(n)+·· ·+C'G., (4.2) 
i<j<m=l n=l,;;ei.i,m 

where Gj({j}) represents the sum of terms in the { } 
of Eq. (4.1) in which I vectors occur for the set of 
particles {j} and either k vectors or zero wave vector 
for the rest of the s particles. 

We shall prove Gu a functional of a product of h's. 
Gu can be formed only by a creation operator creating 
u correlated particles4 acting on 

v v v 

II po(m)+ I: II poem) exp( -ike Vit)Pki(i) 
m=l i=l m=l 

• 
+ I: II poem) exp[ -i(ki· Vi+ kj' v j)t] 

i<j=1 m=l,""i,j 

XPki(i)pkj(j) + ... + I: [pki (i) exp( -ik i , Vit)], (4.3) 
i=l 

where v particles are involved in the creation operator 
(v 2:: u). Consider separately the operator acting on 
each term in (4.3). In each term the sum of the I vectors 
of the correlation [the exponentials of Eq. (4.1), which 
are to the left of the operator] equals the sum of the 
k vectors of the term in (4.3). From the exponentials 
in I on the left we factor a term exp(iki· Xi) for each 
exponential to the right of the operator and commute 
it with the operator. For particles in {v} not in {u}, 
we are free to choose anyone of the particles on the 
left. We do this arbitrarily, selecting particle a. After 
this, the I vectors on the left always sum to zero, and 
each exponential on the right is either 

exp[iki' (Xi-Vit)] or exp[iki· (X,,-Vit)], 

depending as i is or is not contained in {u}. We give this 
alternative the notation exp[ike (X/-Vit)]. 

The operator which takes the set of wav~ numbers 
{ki } into the set lu iSl,3 

n- i I: ({Tu} I Xq,.' I {ki})ilkr(I: 1,,-I: ki). 
k, u i 

Because of the smallness of the k vectors, the matrix 
element as written is essentially independent of the 
{kilo We call this operator X q,/. Also, so far as the sum 
over {I .. } demanded by Eq. (4.1) is concerned, 

ilkr(I: lu-I: ki),"ilkr(I: lu) 
"i lui 

and this il kr commutes with the operator. This imposes 
a limitation on the summation over I vectors which 
was not intended in the original Eq. (4.1). The only 
way to abide strictly by (4.1) is to sum over the I 
vectors with the ilkr and also to sum over all the k 
vectors for each excited particle on the right. We now 
write 
Gu=Q-u I: exp(i I: lu,xu)Okr(L: 1,,)Xq,.' 

{lui lui lui 

x {m~ po(m)+ ~l J!"",Po(m)Q-1 

xL: exp[ik i · (X,-Vit)]pki(i) 
ki 

v v 

+ L: II Po (m)Q-2 
i<j=l m=l,r!i,i 

x L: exp[ik,· (Xi-Vit)+ikj' (Xj- vjt)] 
ki,kj 

v 

+, .. +II{Q-l L: exp[ik i • (X/-Vit)]}. (4.4) 
i=I ki 

94 FRANK C. ANDREWS 

Thus initially present correlations are destroyed in an 
inhomogeneous system by the same scattering mechan­
ism and during the same relaxation time as correlations 
in homogeneous systems. Only creation fragments4 can 
contribute to correlations after such a time. 

4. CORRELATIONS ARISING IN INHOMO­
GENEOUS SYSTEMS 

We define a reduced s-particle distribution function 
by 

. 8 

Xexp[in· (Xi-Vit)]+ I: II po (m)Q-2 

x I: Pnn' (ij) exp[in· (Xi- vit)+in'· (Xj- Vjt)] 
n,n' 

8 • 
+I: II po (m)Q-I I: Pn.-n(ij) 

i<;=1 m=l.~i,j n 

Xexp[in· (Xi-vit)-in· (Xj-Vjt)]+··· 

+n-' I: Pln,I({S}) exp[i 1: ni' (Xi-Vit)]}. (4.1) 
Ins} i-I 

We shall prove that for times t such that th>t>tr , Eq. 
(4.1) may be expressed as a complicated, but completely 
determined, functional of a product of singlet distri­
bution functions. Thus all the time dependence of (4.1) 
will rest in the individual h(i). 

The terms in Eq. (4.1) which contain only Pk'S and 
po's factorize.2 The terms left over have at least two 
molecularly correlated particles. For those with just 
two, the nonmolecularly correlated part again fac­
torizes. Similarly for those with just three, etc. We can 
write 

8 8 

j8=II h (i) +C2 I: G2(ij)] II ll(n) 
i=l i<j=l n=l,~i.j 

8 

+0 I: Ga(ijm) II h(n)+·· ·+C'G., (4.2) 
i<j<m=l n=l,;;ei.i,m 

where Gj({j}) represents the sum of terms in the { } 
of Eq. (4.1) in which I vectors occur for the set of 
particles {j} and either k vectors or zero wave vector 
for the rest of the s particles. 

We shall prove Gu a functional of a product of h's. 
Gu can be formed only by a creation operator creating 
u correlated particles4 acting on 

v v v 

II po(m)+ I: II poem) exp( -ike Vit)Pki(i) 
m=l i=l m=l 

• 
+ I: II poem) exp[ -i(ki· Vi+ kj' v j)t] 

i<j=1 m=l,""i,j 

XPki(i)pkj(j) + ... + I: [pki (i) exp( -ik i , Vit)], (4.3) 
i=l 

where v particles are involved in the creation operator 
(v 2:: u). Consider separately the operator acting on 
each term in (4.3). In each term the sum of the I vectors 
of the correlation [the exponentials of Eq. (4.1), which 
are to the left of the operator] equals the sum of the 
k vectors of the term in (4.3). From the exponentials 
in I on the left we factor a term exp(iki· Xi) for each 
exponential to the right of the operator and commute 
it with the operator. For particles in {v} not in {u}, 
we are free to choose anyone of the particles on the 
left. We do this arbitrarily, selecting particle a. After 
this, the I vectors on the left always sum to zero, and 
each exponential on the right is either 

exp[iki' (Xi-Vit)] or exp[iki· (X,,-Vit)], 

depending as i is or is not contained in {u}. We give this 
alternative the notation exp[ike (X/-Vit)]. 

The operator which takes the set of wav~ numbers 
{ki } into the set lu iSl,3 

n- i I: ({Tu} I Xq,.' I {ki})ilkr(I: 1,,-I: ki). 
k, u i 

Because of the smallness of the k vectors, the matrix 
element as written is essentially independent of the 
{kilo We call this operator X q,/. Also, so far as the sum 
over {I .. } demanded by Eq. (4.1) is concerned, 

ilkr(I: lu-I: ki),"ilkr(I: lu) 
"i lui 

and this il kr commutes with the operator. This imposes 
a limitation on the summation over I vectors which 
was not intended in the original Eq. (4.1). The only 
way to abide strictly by (4.1) is to sum over the I 
vectors with the ilkr and also to sum over all the k 
vectors for each excited particle on the right. We now 
write 
Gu=Q-u I: exp(i I: lu,xu)Okr(L: 1,,)Xq,.' 

{lui lui lui 

x {m~ po(m)+ ~l J!"",Po(m)Q-1 

xL: exp[ik i · (X,-Vit)]pki(i) 
ki 

v v 

+ L: II Po (m)Q-2 
i<j=l m=l,r!i,i 

x L: exp[ik,· (Xi-Vit)+ikj' (Xj- vjt)] 
ki,kj 

v 

+, .. +II{Q-l L: exp[ik i • (X/-Vit)]}. (4.4) 
i=I ki 



                                                                                                                                    

G E ~ ERA L THE 0 R Y 0 F THE A P PRO A C H TOE Q U J LIB R I U M. I I I 95 

If we integrate (4.4) over Xj (all j not included in 
{u}) inserting Il(x",-Xj) in the integrand, and change 
x'" where it appears to Xi> Eq. C4.4) can be simply 
written, using Eq. (2.1), 

Gu=c-vn-uf IT dv". L: exp(i L: I", xuWr(L: I,,)X,/ 
m=l {luI !''l luI 
"'luI 

xf :gdXill(X",-Xj)g/l(i). (4.5) 

We have thus shown G" to be a time-independent 
functional of the product of a number of h's, this 
number being determined by the order in concentration 
of the approximation to which we are calculating. 
Coupling (4.5) with Eq. (4.2) gives the entire 1. as a 
similar functional. 

To illustrate, we write the equation similar to (2.5) 
for the doublet distribution function 12 

ft(afj)=hCa)hCfj)+ fdke-ik.R(> +)() + x:x:J +. ")hCa)h(fj) 

The physical meaning of the operators of the rhs has 
been studied.3,7 

5. DISCUSSION 

We have seen that during an initial period t<tT' an 
arbitrarily given hydrodynamic system evolves in a 
manner characterized by the destruction of initially 
present correlations and the formation of those corre­
lations characteristic of local equilibrium. During this 
period, normal thermodynamic functions such as 
entropy would be difficult to define. For t> tT, the 
complete time dependence of any reduced distribution 
function rests in a product of singlet distribution 
functions. These singlet functions evolve solely through 
dependence on themselves and other singlet functions. 
We have thus found the specific form of the functional 
relationships suggested by Bogoliubov.6 

7 F. C. Andrews, Acad. roy. Belg. Classe sci. (to be published). 

The formal equations in terms of Prigogine diagrams, 
which can now be written down to any desired order 
in either strength of coupling or concentration, represent 
a starting point for a review of all of transport theory. 
We are ready to start summing diagrams and con­
sidering various potential models in studying the various 
transport processes to place them on a sound basis, 
i.e., derived directly from the Liouville equation the 
mechanical equation of motion. 
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A ~et .of coupled integral equations describing the collisions of diatomic molecules is developed by 
exploltatIO~ of the properties of the irreducible representations of the three-dimensional rotation group 
An expanSIOn of the cross section in spherical harmonics is described, and its virtues argued. 

T HE first paperl of this series presented a formal 
theory of inelastic molecular collisions. In this 

paper we develop the theory further for the case of 
diatomic molecules. 

The basis of this development, as in several earlier 
papers ,2-4 lies in the exploitation of the properties of the 
irreducible representations of the three-dimensional 
rotation group. In these early papers the wave equation 
was interpreted as a differential equation, so that the 
representation coefficients needed to be differentiated. 
In the present paper we use an integral equation for­
mulation, and are thus left with the much simpler 
problem of integrating the representation coefficients. 
Both methods lead to sets of coupled equations, differ­
ential equations in the one case and integral equations 
in the other, and we have shown that the two methods 
are equivalent. 5 Though no new results are derived in 
this paper from the integral equation approach, it is 
presented as an example of a powerful mathematical 
technique, which is susceptible to generalization. 

The remaining part of the paper relates the cross 
sections to the asymptotic forms of the solutions of the 
equations mentioned previously. An expansion of the 
cross sections in the representation coefficients leads to 
a set of cross section coefficients expressible to a large 
extent in terms of group theoretical variables, and thus 
dependent in a simple way on the chemical nature of 
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the molecules involved. The expansion has the further 
virtue that the averaged cross sections of interest in the 
kinetic theory involve only the first few coefficients, and 
are exactly expressible in terms of these coefficients. 

1. INTRODUCTION 

We wish to study the collisions of two diatomic 
molecules. The results must be of the form of cross 
sections for the occurrence of certain final states, given 
the initial state. The specification of the initial state 
includes the rotational and vibrational states of each 
molecule, the kinetic energy, and the direction of 
motion of one molecule relative to the other. This last 
is not arbitrary, since an objective direction in space 
is provided by the quantization of the rotational states. 

What is desired is the cross section per unit solid 
angle for scattering in a given direction, with the mole­
cules in given rotational and vibrational states. The 
kinetic energy is known from knowledge of the internal 
energies and the fact that the total energy must be 
conserved. 

Quite often only the energy of an internal state is of 
interest, because the degenerate states are equally 
probable. In that case the proper cross section is one 
averaged over initial states and summed over final. 
The reason for the lack of symmetry between initial and 
final lies in that for any cross sections we count the total 
number of final states for unit initial flux. This queJtion 
is considered in some detail later. 
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We will rely on the terminology and concepts of the 
three-dimensional rotation group. One point which must 
be stressed is the distinction between point trans­
formations and coordinate transformations. In what 
follows we use point transformations, for various 
reasons, the most important of which is that the internal 
energy states must be quantized relative to fixed axes. 
Thus our rotations are rotations of the whole space, 
carrying material bodies with them, and the coordinate 
system remains fixed. 

Our conventions and terminology are those of the 
English edition of Wigner's book on group theory.' 

6 E. Wigner, Group Theory (Academic Press, Inc., New York, 
1959). 
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the molecules involved. The expansion has the further 
virtue that the averaged cross sections of interest in the 
kinetic theory involve only the first few coefficients, and 
are exactly expressible in terms of these coefficients. 

1. INTRODUCTION 

We wish to study the collisions of two diatomic 
molecules. The results must be of the form of cross 
sections for the occurrence of certain final states, given 
the initial state. The specification of the initial state 
includes the rotational and vibrational states of each 
molecule, the kinetic energy, and the direction of 
motion of one molecule relative to the other. This last 
is not arbitrary, since an objective direction in space 
is provided by the quantization of the rotational states. 

What is desired is the cross section per unit solid 
angle for scattering in a given direction, with the mole­
cules in given rotational and vibrational states. The 
kinetic energy is known from knowledge of the internal 
energies and the fact that the total energy must be 
conserved. 

Quite often only the energy of an internal state is of 
interest, because the degenerate states are equally 
probable. In that case the proper cross section is one 
averaged over initial states and summed over final. 
The reason for the lack of symmetry between initial and 
final lies in that for any cross sections we count the total 
number of final states for unit initial flux. This queJtion 
is considered in some detail later. 
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We will rely on the terminology and concepts of the 
three-dimensional rotation group. One point which must 
be stressed is the distinction between point trans­
formations and coordinate transformations. In what 
follows we use point transformations, for various 
reasons, the most important of which is that the internal 
energy states must be quantized relative to fixed axes. 
Thus our rotations are rotations of the whole space, 
carrying material bodies with them, and the coordinate 
system remains fixed. 

Our conventions and terminology are those of the 
English edition of Wigner's book on group theory.' 

6 E. Wigner, Group Theory (Academic Press, Inc., New York, 
1959). 
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Other references are Rose,7 Edmonds,8 and Hirschfelder 
et al.9 A rotation is parametrized in terms of Eulerian 

angles, which are defined by the following factorization 
of the rotation matrix R: 

[ 

cosa sina 0] [COS{3 0 
R=R(a/3'Y)= -sina cosa 0 0 1 

o 0 1 sin/3 0 

- Sin/3] [ co~'y sin'Y 0] 
o - SIll'Y COS'Y 0

1 
' 

cos{3 0 0 
(1.1) 

where 0 S;a S; 271", 0 S;/3 S; 71", and 0 S;'Y S; 271". The inverse 
matrix R-l is given by 

R(a/3'Y)-1=R(271"-'Y±7t', {3, 271"-a±7t'), (1.2) 

where the plus or minus sign is chosen as needed to keep 
the argument in the proper range. It is worthy of note 
that the rotation R(a/3'Y) which rotates a vector v to 
coincidence with the upper half of the z axis has Eulerian 
angles {3, I' which are equal to the polar angles (J, rp of 
the vector. Thus, when convenient, directions in space 
will be given in terms of rotations. 

A critical point is that the Hamiltonian of the system 
of two colliding particles is invariant to the rotations 
of the whole system.10 This follows from the fact that 
it is an isolated system. As a result the representations 
of the rotation group (since they do form a complete, 
orthogonal set over the group) are the natural set for 
series expansions. Following Wigner6 we denote the 
elements of the 2j+ 1-dimensional matrix representation 
by 

Dj(R)nm or D(jnmIR), 

where the latter form is preferred for complex ex­
pressions. We use only the simplest properties of the 
matrix representations, e.g., the orthogonality with 
respect to integration over the group and the matrix 
relation 

Dj(RS) = Dj(R)Dj(S). 

The Clebsch-Gordan series is written in the form 

Dil (R)nlmlDi2(R)1l2m2 =""l:,J C (jlj2J ; nl +n2, ml +m2) 

X DJ (R)n 1 +n2.ml +m2. 

We use Rose's7 C(jj'J;nn') rather than Wigner's6 
SJnn,ii' for typographical convenience,u 

With the foregoing nomenclature settled, it is possible 
to set up a flexible and powerful set of coordinates for 
the problem at hand, which is the interaction of a pair 
of diatomic molecules. Let the molecules be labeled a 
and b, with atoms aI, a2 and b1, b2, respectively. Let the 
vector from the center of mass of a to the center of mass 

7 M. E. Rose, Elelllentary Theory of Ang1dar MOlllentltlll (John 
Wiley & Sons, Inc., New York, 1957). 

8 A. R. Edmonds, Angular MOlllentulII in QuantulII Mechanics 
(Princeton University Press, Princeton, New Jersey, 1957). 

9 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 
1954). 

10 Let it be emphasized that this is a physical statement, not 
one about coordinate transformations. Any Hamiltonian is 
invariant to coordinate transformations, as is well known. 

II See also E. U. Condon and G. H. Shortley, The Theory of 
Atolllic Spectra (Cambridge University Press, New York, 1935). 

of b be r, the vector from al to a2 be r a and the vector 
from bl to b2 be rb. Let the polar forms of these vectors 
be (r(Jrp) , (ra(Jarpa) , and (rb(Jbrpb). Further, let the rota­
tions R, Ra, Rb be defined such as to place the respec­
tive vectors parallel to the positively directed z axis. 
This defines the rotations except for the first Eulerian 
angle, that written as a prevKJUsly. For R, this angle is 
defined by the requirement that the rotation put the 
vector r a in the left half (x<O, y=O) of the xz plane. 
The first Eulerian angles for the rotations Ra, Rb are 
taken to be zero. 

It is also convenient to use a pair of rotations to 
specify the orientation of the two molecules ra, rb 
relative to the intermolecular axis. First let the rotation 
R be performed on the whole system, then let sa, Sb 
be the rotations that bring ra, rb parallel to the z axis. 
Just as with Ra, Rb, the first Eulerian angles are arbi­
trary and are put equal to zero. From the definition of 
the first Eulerian angle of R, it is seen that the third 
Eulerian angle of Sa is zero. The second Eulerian angle 
of sa(Sb) is the angle between rand r a (rb), while the 
third angle of Sb is the azimuthal angle between ra 

and rb. It is evident that 

Ra=saR, and Rb=SbR. 

Similarly, rotations can be used to describe the direc­
tion of motion of the molecules before and after the 
collision. The desired cross sections will have the form 

u(nalama; nblbmb; Tl El na'la'ma'; nb'lb'mb'; T'). 

Here nlm are the usual quantum numbers of a vibrating 
rotating molecule. The rotation T is such as to make 
the velocity of b relative to that of a parallel to the 
z axis, and E is the total energy of the collision. Primed 
variables refer to the values after the collision. 

2. EXPANSIONS IN THE D(lmn/R) 

The internal wave functions have the forml2 

Y(lm I Ra)Z(nll ra) = (2/+ 1)!( 47t')-! 
XD(/OmIRa)Z(nllra), (2.1) 

where the Y is the usual spherical harmonic of the 
second two Eulerian angles of Ra, and Z(nll ra) is the 
oscillator wave function. These functions will appear as 
a product of a pair of internal wave functions with a 
plane wave function. We have for the latter13 

eik ·r= LL(2L+ 1)J(LI kr)PL(cos8), ----
12 L. 1. Schiff, QuantulII Mechanics (McGraw-Hill Book Com-

pany, Inc., New York, 1949). 
13 G. M. Watson, A Treatise on the Theory of Bessel Functions 

(Cambridge University Press, New York, 1952). 
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where e is the angle between k and r, j (L I ... ) the 
spherical Bessel function12 and P L the Legendre poly­
nomial. If T is the rotation which puts k parallel to 
the z axis, then 8 is the middle Eulerian angle of RT-l, 
thus 

PL(cos8)=D(LOOI RT-l) 
= L.( -1)8D(LOsIR)D(LO-sl T), 

which yields the following expansion for a plane wave 
function, 

eit ·r= LL8 iL( -l)8(2L+l)D(LOsIR) 
XD(LO-si T)jL(kr). (2.2) 

The Green's function to be used later may be 
~xpanded similarly. The following is a well-known series 
written in a somewhat unusual form/ 3•a 

eiklr-r'l 

--=ik L(21+1)jI(krdltl(kr»P1(coscJ», 
Ir-r'l I 

where cJ> is the angle between the vectors rand r', 
r< the lesser of rand r', and r> the greater. The 
Legendre polynomial may be written in terms of the 
rotations Rand R' just as previously with result 

eiklr-r'l 

--=ik L(21+1)jl(krdltl(kr>)( -1)' 
I r-r'l I. 

XD(lOsIR)D(IO-sIR'). (2.3) 

The intermolecular potential energy function, which 
in I was simply denoted by V, here is a function of r, 
ra, rb, sa, Sb only. The dependence of V (rraybSaSb) on 
the rotations can be expressed in terms of an expansion 
in the irreducible representations. Of the many possible 
forms the following seems to be the most convenient: 

however, at several points in what follows it will be 
necessary that all functions be expressed in terms of 
R, Ra, Rb, which may be done by use of the equation 
S"=RaR-1, the corresponding equation for S6, and the 
defining property of a matrix representation, that group 
multiplication corresponds to matrix multiplication. 
The result is 

V(rrarbSaSb)= L (-1)81+''v(l112JL2Irrarb) 
l}l2~231S2 

XD(llOSlj Ra)D(Ms21 Rb) 

xD(l1JJ.2-S1/R)D(11-JJ.2-S2IR). (2.S) 

At this point there are three rotating systems to be 
considered: the two molecules and the rotation of one 

molecule relative to the other. It will be found to be 
convenient to couple these three systems into a state 
with sharp total angular momentum. By the rule for 
composition of angular momenta, the function 

I(laN}"LM/RRaRb) 

= L C(I}"Lm, M-m)C(lalblma, m-ma) 

XD(laoma/Ra)D(lbD, m-maIRb) 

XD(XO, M -m/ R) (2.6) 

represents a state where a and b have been coupled to 
give a state with total angular momentum I, and z 
component m and this state in turn is coupled with the 
relative rotation to give total angular momentum L, 
and z component M. The equation may be inverted to 
give 

D(laOma I Ra)D(l60mb I Rb)D(AOJJ.1 R) 

= L C(IAL, ma+mb, JJ.)C(lalbtm"mb) 
lL 

As before, it is well to express the function I in terms 
of RSaSb instead of RRaRb, with result 

J(lalbIXLM/ RSaSb) 

= I (talbiALM I R,saR,SbR) 

= L C(IALm, M -m)C(lalbtmam-trta) 
momst 

XD(laOs I Sa)D(Ib()t j Sb)D(lasma I R) 

XD(lbt, m-maIR)D(AO, M-m/R). 

The Clebsch-Gordan series may be applied twice in 
succession to the product of representation coefficients 
involving R, so that (dropping the RSaSb dependence 
for the time being) 

XD(laos I Sa)D(Ib()t / Sb)C(lalblast) 

XC(talblama, m-ma)C(laAI4, s+t, 0) 

XC(laA14m, M-m)D(14, s+t, MjR). 

By the orthogonality rules6 for the Clebsch-Gordan 
coefficients, the sums in ma and m become Oila and OI4L, 
respectively, giving the following expression for J 

J(laN'ALMIRSaSb) 

= Lat C(lalblst)C(IAL, s+t, O)D(laosl Sa) 
XD(Ib()tl Sb)D(L, s+t, M\ R), (2.8) 

14 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hili Book Company, Inc., New York, 1953). which is the simplest expression of the form desired. 
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3. THE INTEGRAL EQUATIONS 

In I, the integral equation 

where the energy dependence of G+(E) is evidenced 
only through k= k(nl1lnJ2). By use of Eq. (2.1) twice, 
and the orthogonality of the Clebsch-Gordan coef-

if-'i= (/'i+G+Vif-'i (3.1) ficients, the operator becomes 

was set up to be solved with the initial state (/'i a plane 
wave, that is, with sharp linear momentum. Here the 
resulting equations are simpler if the integral equation 
is taken with (/'i of sharp angular momentum, and the 
wave functions originally desired then built up by 
linearity. The initial state then will have the form 

(/'i= (/'(iianbia[bl~LM I RRaRbrr"rb) 
=Z(iiala i ra)Z(iiblbl rb)j(L I kr)I(ia[blUMiRRaRb). 

(3.2) 

The use of Eq. (2.2) to form a plane wave from a linear 
combination of these functions will be discussed in 
Sec. 4. 

It is better here to work with the operator G+(E) 
directly, which can be done jf it is written as the usual 
bilinear series for the part which is a function of internal 
variables. Thus 

G+(E)f(rrarbRaRb) 

== (~)2 fff r: Y(l"m"jR")Y(lam"IRa')* 
211" nalam tl 

nbllrynb 

X Y(Zbmbl Rb) Y(lbm"/ Rb')'" Z(n"l" I ra)Z(n"l"l r"')* 

( 

p, eiklt-r'l) 
XZ(nblblrb)Z(nblblrb')'" -_.--

21rh2 I r- r' I 
Xf( i' rarb' Ra' RIJ')drdra' drb' dRa' dRb'. 

Here the wave number is defined in the obvious manner,! 
as in Eq. 1-(2.2), that is, 

t.uk2= t.uk (natan blb)2= E-Ea-EI>. 

The factor (1/21r)2 occurs because the spherical har­
monics are normalized to unity when integrated over 
two Eulerian angles, while the present integration is 
over three. 

The operator may be put in better form by use of 
Eqs. (2.1) and (2.3). In addition, the dummy indices 
nal"mflnblbmb are changed to nlllmlnJ2m2. Thus 

(2/1+ 1) (2/ 2+ 1) (21+ 1) 
X Z(n1ll I ra

) 

(81r2) 2 

XZ (n212! rb)D(lOs! R)D(llOml / Ra) 

XD(120ffl21 Rb)Z(n1lll ra')'" Z(n212! r6')* 

XD(10s!R')*D(MmlIRa')*D(l~m2IRIJ')* 

Xjl(kr <)hl(kr» f(r'r a' rb'Ra' Rbi) 

X r'2dr' dR' dra' drb' dRa' dRb', 

1r f (P,ki) G+(E)f=- '" r: ---
27r • 1,1,J,l. 21rft2 

, I r.MIt IJh 

(211+ 1) (2/2+ 1) (215+ 1) 
X jl5 (krdhl. (kr» 

(81r2) 2 

XI (11121at.l4M I RR" Rb)I (1lMaloM I R'Ra'Rb')* 

XZ(nl1ll ra)Z(n1lll ra')* Z(n212! rb) 

XZ(n212! rb')* f(r'r"'rb'R'Ra'Rb') 

Xr'2dr'dra'drb'dR'dRa'dRb'. (3.3) 

By a basic property of group integration, the integral 
can be expressed in terms of R'Sa'Sb', with 

dR'dSa'dSb' =dR'dRa'dRb l
• (3.4) 

Then, if the functions 1(· .. I RR" Rb) are replaced by 
l(·· 'jDS>Sb), the entire operator can be expressed in 
terms of RSaSb instead of RRaRb, a change of vari­
able which turns out to be quite convenient. 

The wave function is expanded in terms of the I's as 

if-'= r: !/t(na" n""la"lb"l"},." L" Mill r)Z(na"[a"1 ra) 
nG"nll"lo"l" 
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Substitution of Eqs. (3.5), (3.2), (3.3), and (2.4) in 
Eq. (3.1) yields the integral equation in series form, 
after due notice is taken of Eqs. (2. i) and (3.4). 
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+~f ... f {r:(- .u
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3. THE INTEGRAL EQUATIONS 
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where the sum is over nln211121314M na' nb'la'l'X' L' M'X1X2Jl.2, 

and fe or k is k(iialaiiblb) or k(n1lln.)2), respectively. 
This form of the integral equation can be simplified 

by use of the orthonormality of the Z's and the ortho­
gonality of the I's, 

XI (ta'lb'I'X' L'M'I RRaRb)*dRdRadRb 

(811"2)3 
=51ala'51blb'511,5XA,5LU5MM' . 

(2Ia+ 1) (2I b+ 1) (2X+ 1) 

Then if the vibrational matrix element be written 

= f f Z(nalalra)*Z(nblblrb)*v(XlX2/l-2Irrarb) 

XZ(na'la' I ra)Z (nb'lb' I rb)dradrb (3.7) 

and an integral operator be defined 

= f j).. (k(nalanblb)r dh).. (k (nalanblb)r» 

Xr'2 f(r')dr', (3.8) 

the resulting set of coupled integral equations (an 
integro-matric equation) becomes [we use o(a,b,.··; 
a' ,b', ... ) as shorthand for Oaa'Obi>' ... J 

1/;(nanblalblXLMI r) 

=o(nanblalbIALM; flaiiblalbl>.LM)j[>'1 k(iialaiiblb)J 

( 
Jl.ki) (21 a+1)(21b+1)(2X+1) 

+:E -- .-------
"4',,b'la'/", 411"2h2 (811"2)2 
[''A'L'M' -

XIX.J.t, 

X[f f IJ(talbIXLMIR'sa'Sb')* 

XD(X10- Jl.21 Sa')D (X20Jl.21 Sb') 

X J (la' Ib'I'X' L' M'I R' Sa' Sb')dR' dSa' dSb'] 

XG(Xnalanblb){ v (nalanblb ; X1X2Jl.2, na'la'nb'lb' I r) 
X1/; (na' nb'la'lb'l'X' L' M'I r)}. (3.9) 

It remains to evaluate the quantity within brackets in 
Eq. (3.9). Let it be labeled A. Then, on writing the J's 
in terms of their definition [Eq. (2.8)J, we have 

A = Iff :E:t,C(lalblst)C(IAL, s+t, O)D(laos I Sa)* 

XD(lbOtISb)*D(L, s+l, MIR)D(X10-Jl.zISa) 

XD(X20Jl.21 Sb)C(la'lb'l's't')C(I'X'L', s' +t', 0) 

XD(la'Os'l Sa)D(lb'Ot'l Sb') 

XD(L', s'+t', M'IR)dRdSadSb. 

Now the integral with respect to R is immediately seen 
to equal 

OWOM.W08+t.s'+t{811"2/ (2L+ 1) J 
by the orthogonality of the representation coefficients. 
Similarly, integrals over products of three D's can be 
expressed in terms of the Clebsch-Gordan coefficients, 
with results that the integral over Sa is 

811"2 
--C(la'X1tafXJ)C(la'X1la, s+Jl.Z, -Jl.z)os'. s+I" 
21a+1 

and that over Sb is 

Combining these results leads to 

A 
(811"2)3 

--------Owh.w :E C(lalblst) 
(2Ia+ 1) (2Ib+ 1) (2L+ 1) 8,t 

XC(IXL, s+t, O)C(I'X'L, s+t, 0) 

XC (la'lb'l' S+Jl.2, t- Jl.2)C(la'X1laOO) 

XC (la'Xlla, s+ Jl.z, - Jl.2)C (lb'X 2IbOO) 

XC (lh'Xzlb, t- Jl.2, Jl.2) 

which, on substitution in Eq. (3.9), yields 

1/;(iiaiibla[bl>.LM; nanblalblXLM I r) 
=0 (nanblalblXLM ; iiaiiblalbl>.LM)j(>'1 fer) 

2Jl.ki (2X+1) -- L -- C(lalblst)C(la'lb'I'st) 
h2 la'WI'X' 2L+ 1 

XIA.2J.I.'.lSt 

XC(lXL, s+t, O)C(l'X'L', s+t, 0)C(la'X1laOO) 

XC(la'X1la, S+Jl.2, -Jl.2)C(lb'XzlbOO) 

XC(lb'Xzlb, t-Jl.2, Jl.2)G(Xnalanblb) 

X {v(nalanblb; X1X2Jl.2; na'la' nb'lb' I r) 
X1/; (iiaiib[albl>.LM ; na' nb'la'lb'I'X' L' M'I r)}, (3.10) 

where k=k(nalanblb) and fe=k(iialaiiblb). It should be 

100 G. GIOUMOUSIS AND C. F. CURTISS 

where the sum is over nln211121314M na' nb'la'l'X' L' M'X1X2Jl.2, 

and fe or k is k(iialaiiblb) or k(n1lln.)2), respectively. 
This form of the integral equation can be simplified 

by use of the orthonormality of the Z's and the ortho­
gonality of the I's, 

XI (ta'lb'I'X' L'M'I RRaRb)*dRdRadRb 

(811"2)3 
=51ala'51blb'511,5XA,5LU5MM' . 

(2Ia+ 1) (2I b+ 1) (2X+ 1) 

Then if the vibrational matrix element be written 

= f f Z(nalalra)*Z(nblblrb)*v(XlX2/l-2Irrarb) 

XZ(na'la' I ra)Z (nb'lb' I rb)dradrb (3.7) 

and an integral operator be defined 

= f j).. (k(nalanblb)r dh).. (k (nalanblb)r» 

Xr'2 f(r')dr', (3.8) 

the resulting set of coupled integral equations (an 
integro-matric equation) becomes [we use o(a,b,.··; 
a' ,b', ... ) as shorthand for Oaa'Obi>' ... J 

1/;(nanblalblXLMI r) 

=o(nanblalbIALM; flaiiblalbl>.LM)j[>'1 k(iialaiiblb)J 

( 
Jl.ki) (21 a+1)(21b+1)(2X+1) 

+:E -- .-------
"4',,b'la'/", 411"2h2 (811"2)2 
[''A'L'M' -

XIX.J.t, 

X[f f IJ(talbIXLMIR'sa'Sb')* 

XD(X10- Jl.21 Sa')D (X20Jl.21 Sb') 

X J (la' Ib'I'X' L' M'I R' Sa' Sb')dR' dSa' dSb'] 

XG(Xnalanblb){ v (nalanblb ; X1X2Jl.2, na'la'nb'lb' I r) 
X1/; (na' nb'la'lb'l'X' L' M'I r)}. (3.9) 

It remains to evaluate the quantity within brackets in 
Eq. (3.9). Let it be labeled A. Then, on writing the J's 
in terms of their definition [Eq. (2.8)J, we have 

A = Iff :E:t,C(lalblst)C(IAL, s+t, O)D(laos I Sa)* 

XD(lbOtISb)*D(L, s+l, MIR)D(X10-Jl.zISa) 

XD(X20Jl.21 Sb)C(la'lb'l's't')C(I'X'L', s' +t', 0) 

XD(la'Os'l Sa)D(lb'Ot'l Sb') 

XD(L', s'+t', M'IR)dRdSadSb. 

Now the integral with respect to R is immediately seen 
to equal 

OWOM.W08+t.s'+t{811"2/ (2L+ 1) J 
by the orthogonality of the representation coefficients. 
Similarly, integrals over products of three D's can be 
expressed in terms of the Clebsch-Gordan coefficients, 
with results that the integral over Sa is 

811"2 
--C(la'X1tafXJ)C(la'X1la, s+Jl.Z, -Jl.z)os'. s+I" 
21a+1 

and that over Sb is 

Combining these results leads to 

A 
(811"2)3 

--------Owh.w :E C(lalblst) 
(2Ia+ 1) (2Ib+ 1) (2L+ 1) 8,t 

XC(IXL, s+t, O)C(I'X'L, s+t, 0) 

XC (la'lb'l' S+Jl.2, t- Jl.2)C(la'X1laOO) 

XC (la'Xlla, s+ Jl.z, - Jl.2)C (lb'X 2IbOO) 

XC (lh'Xzlb, t- Jl.2, Jl.2) 

which, on substitution in Eq. (3.9), yields 

1/;(iiaiibla[bl>.LM; nanblalblXLM I r) 
=0 (nanblalblXLM ; iiaiiblalbl>.LM)j(>'1 fer) 

2Jl.ki (2X+1) -- L -- C(lalblst)C(la'lb'I'st) 
h2 la'WI'X' 2L+ 1 

XIA.2J.I.'.lSt 

XC(lXL, s+t, O)C(l'X'L', s+t, 0)C(la'X1laOO) 

XC(la'X1la, S+Jl.2, -Jl.2)C(lb'XzlbOO) 

XC(lb'Xzlb, t-Jl.2, Jl.2)G(Xnalanblb) 

X {v(nalanblb; X1X2Jl.2; na'la' nb'lb' I r) 
X1/; (iiaiib[albl>.LM ; na' nb'la'lb'I'X' L' M'I r)}, (3.10) 

where k=k(nalanblb) and fe=k(iialaiiblb). It should be 



                                                                                                                                    

MOLECULAR COLLISIONS. II 101 

noted that B(L,M; L,M) occurs in the inhomogeneous 
term of the integral equation, and there is no mixing 
among the values of Land M in the homogeneous term. 
Thus unless M =M and L=L, the equation is homo­
geneous and can have only zero as a solution. Further­
more, neither M nor M appears other than in the 
unknown 1f, so that 1f is not a function of M at all. Sym­
bolically, the foregoing statements are 

1f(nanb1alb['XLM; nanblaNXLM I r) 

=o(L,M; LM)1f(nanb1alb['XLo; nanbla[b[XLO). (3.11) 

It is this simplification which is the purpose of the 
introduction of initial states of sharp angular mo­
mentum, rather than the plane waves one would 
otherwise prefer. 

4. CROSS SECTIONS 

The first step in evaluating the collision cross sections 
is to find a linear combination of the initial states cp 
used in the previous section which forms a plane wave 

Given this, the same linear combination of the solutions 
1f to the integral equation will form a solution which 
has a plane wave for its initial state, which is just the 
sort of solution needed in forming the cross section. 
Now the initial state given in Eq. (3.2) is already in 
the form of Eq. (4.1) as far as the vibrational wave 
functions are concerned, so that these may be ignored 
in what follows. 

The linear combination needed must be of the form 

eik .rY(iama) Y(ibmb) 

= L d(iamalbmb; l'XLM) 

XI ([aibl'XLM I RRaRb)j('X I kr), (4.2) 

where the sum is over 1, 'X, L, and M. The coefficients 
d may also be functions of the wave number vector k, 
or perhaps only its direction as described by the rotation 
T. It is not difficult to show, by use of Eq. (2.2), that 

d(lamalbmb; l'XLM) 

= [(21a+ 1) (2lb+ 1) ]!(471")-li M*(2'X+ 1) 

XD('XO, ma+mLMI T)c(i'XL, ma+mb, 
M -ma-mb)C(ialblmamb), (4.3) 

where M*= 'X+2(M -ma-mb). It is evident that the 
solution to the integral equation will have an asymptotic 
form 

1f(nanb1a1h1'XLo; nanblalblxLo I r) 
- 0 (na . .. ,na . .. ) j ('XI ifr) '" J(nanbla1bl'X; L; 

nanblaNX)r-leikr, (4.4) 

where J is a constant with respect to r. The asymptotic 
form of the solution with plane wave initial state leads 

to 

J(T I na1anblbmb; nalamanblbmb I R) 

= L (471")[(21a+ 1) (21b+ 1)J-td(lama1bmb; l'XLM) 
X J(nanblalb['X; L; nanblalblX) 

XC(IXL, ma+mb, M -ma-mb)C(lalblmamb) 

XD(AO, M-ma-mbIR) 

= L[ (21a+ 1) (21b+ 1) ]![ (21a+ 1) (21b+ 1) ]-t 
XiM*(2'X+1)C(l'XL, m"+mb, M -ma-mb) 
XC(IXL, ma+mb, M -ma-mb)C([aib1mamb) 

XC (lalblmamb) J( fihiblalbl'X; L; nanblalblX) 

XD('XO, ma+mb-MI T) 

XD(XO; M -ma-mbIR), (4.5) 

where both sums are over l'XLM1).., and the second 
equation arises from the substitution of Eq. (4.3) in 
the first. 

By analogy withl Eq. 1-(47), the cross section for 
scattering from internal states na1ama and nblbmb and 
direction T to states nalama and nblbmb and direction R 
is given by 

(J(nalamanblbmb; T I nalamanblbmb; R) 

= [k (nalanblb)]/[k (nalanb1b)] 

X I J(T I nalamanblbmb; nalamanblbmbl R) 12. 

The absolute square may be written as the product of 
J with its complex conjugate, and if primed dummy 
indices are used for the latter, a series over the 12 indices 

l'XLM1Xl''X'L'M'I'X' 

results. The factor 

D('XOma+mb- M I T)D('X'Oma+mb- M' I T)* 

XD(XOM -ma-mbl R)D(X'OM'-ma-mbl R)* 

may be transformed by use of the Clebsch-Gordan 
series to 

(_1)ma +mb +,na +mb L C('X'X'XaOO) 
A3A4 

Let the abbreviation m=ma+mb and m=ma+mb be 
introduced, and the variables M, M' be changed to 
M = J.'a and M' = J.'a- J.'4. Then the cross section may be 
written in the form 

(J(na ••• ; Tina ... ; R)=L (J(na .. ·IXaX4J.'4Ina ••• ) 

XD(XaO-J.L41 T)D(X40J.'4IR), (4.6) 
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X I J(T I nalamanblbmb; nalamanblbmbl R) 12. 

The absolute square may be written as the product of 
J with its complex conjugate, and if primed dummy 
indices are used for the latter, a series over the 12 indices 

l'XLM1Xl''X'L'M'I'X' 

results. The factor 

D('XOma+mb- M I T)D('X'Oma+mb- M' I T)* 

XD(XOM -ma-mbl R)D(X'OM'-ma-mbl R)* 
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series to 

(_1)ma +mb +,na +mb L C('X'X'XaOO) 
A3A4 

Let the abbreviation m=ma+mb and m=ma+mb be 
introduced, and the variables M, M' be changed to 
M = J.'a and M' = J.'a- J.'4. Then the cross section may be 
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(J(na ••• ; Tina ... ; R)=L (J(na .. ·IXaX4J.'4Ina ••• ) 

XD(XaO-J.L41 T)D(X40J.'4IR), (4.6) 
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where 

k(nalanblb) (21"+1)(210+1) _ 
_ _ I: i!'*(2X' + 1) 

k(nalajiblb) (21"+ 1) (21b+ 1) 

X (2X+1)C(1~L,m, 1J.3-m)C(l'~'L',m, 1J.3-1J.4-m) 

xc(laihlmamb)CCiaihl'mamb)C(lalblmamb) 

XC(lalbl'mamb)C(~~IX300)C(XX'X400) 

XC(~~'A.3, m-lJ.a, P.a-1J.4-m) 

XC(XX'X4, lJ.a-m, m+1J.4-P.a) 

Xf(naiib1aN~; L; nanblalbl'A) 

Xf(nanblatol'~!; L'; n"n"l"lbl'X')*, (4.7) 

where 1J.*=~-~'+2(1J.4+m+m) and the sum is over 
Jl~A.lll'~'X'LL'p.a. Thus the cross sections, which are 
the goal of this study, are exhibited explicitly in terms 
of the solutions of an integral equation. 

The form chosen for the presentation of the cross 
section, as a series in what are essentially spherical 
harmonics of the initial and final angles, is believed to 
be quite significant. It is clearly not limited to the case 
here considered, but rather should hold for any scat­
tering process, since it is a very natural development 
of the group-theoretical formalism. A similar relation 
has been given by Blatt and Biedenharn1il in connection 
with nuclear scattering, and also by the present authors 
in connection with a limited approximation.16 While 
there is some question of the rapidity of convergence of 
the series, its use is expected to be extremely valuable 
in the kinetic theory of gases, since there the cross 
sections occur as variously weighted angular averages. 
Thus, by use of the orthogonality relations among the 
spherical harmonics it would be possible to obviate 
both the labor and inaccuracy of a numerical inte­
gration. 

S. CROSS SECTIONS: UNPOLARIZED BEAMS 

Many physical systems are such that the distribution 
among the quantum numbers ma, mb is uniform. Such 
is the case at equilibrium, of course, and may very well 
remain so at conditions sufficiently near equilibrium. 
Such would also be the case in a typical molecular beam 
scattering experiment. Since the cross section is defined 
as the number of particles per unit solid angle per unit 
initial flux, the proper average to use in such situations 
is one averaged over incoming particles and summed 

16 J. M. Blatt and L. C. Biedenham, Revs. Modem Phys. 24, 
249 (1952). 

16 G. Gioumousis and C. F. Curtiss, University of Wisconsin 
Naval Research Laboratory Rept. OOR-8 (1953). 

over outgoing. On noting that there are 2/+ 1 values of 
m for each I, we define17 

u(lalb,T I talb,R) = [(21a+ 1) (21b+ 1)]-1 

XI: u(lamalbmb,Tllamalbmb,R), (5.1) 

where the sum is over m"mbmamb• The cross section 
coefficients u(la .. ·jXaX4IJ.411a ... ) of Eq. (4.6) are aver­
aged similarly. 

Inspection of Eq. (4.7) shows that the indices m as 
well as the dummy index P.a occur only in known factors, 
either in Clebsch-Gordan coefficients or in exponents. 
Let the summation be changed to one over mil. and 
m=ma+mb. Then the following sum, 

I: C(lalbl,m''', m-ma)C(lalbl',ma, m-ma) =011', (5.2) 
rna 

as well as a similar one over barred indices, is seen to 
occur. The sum over m leads to a Racah function, 

m 

= (-1)u+LHH'[(2L+1)(2L'+1)Ji 

XC(LL'A.4, -P.a, P.3-1J.4)W(L~L'X'; lxa), (5.3) 

while the sum over m yields 

( -1)l*[(2L+l)(2L'+1)Ji 

XC(LL'>'a, -lJ.a, lJ.a-p.4)W(L~L'~; lxa), (5.4) 

where 1*=1+x3+L+L'. Finally, a sum over p'a gives 

I: C(LL'A.a, -lJ.a, lJ.a-1J.4)C(LL'>'4, -p'a, 1J.3-P.4) =O}.aX4. 

(5.5) 

In the process of evaluating the sums over m's and P.a, 
the index P.4 no longer appears in any Clebsch-Gordan 
coefficient. On noting that 

D(>'3Jt.O IT-I) = (-1)p'D(XaO-P.41 T), 

we have that 

= L D(A.aOiJ.41 R)D(XaIJ.40/ T-I) 
p, 

(5.6) 

Combination of Eqs. (5.2-6) yields the following form 
for the cross section: 

u(lalbTllalbR) = I: u(lalb; lalb I Xa)D(XaOO I RT-I), (S.7) 
Xa 

11 The vibrational quantum numbers play no role in the con­
siderations of this section and thus need not be written. 

102 G. GIOUMOUSIS AND C. F. CURTISS 

where 

k(nalanblb) (21"+1)(210+1) _ 
_ _ I: i!'*(2X' + 1) 

k(nalajiblb) (21"+ 1) (21b+ 1) 

X (2X+1)C(1~L,m, 1J.3-m)C(l'~'L',m, 1J.3-1J.4-m) 

xc(laihlmamb)CCiaihl'mamb)C(lalblmamb) 

XC(lalbl'mamb)C(~~IX300)C(XX'X400) 

XC(~~'A.3, m-lJ.a, P.a-1J.4-m) 

XC(XX'X4, lJ.a-m, m+1J.4-P.a) 

Xf(naiib1aN~; L; nanblalbl'A) 

Xf(nanblatol'~!; L'; n"n"l"lbl'X')*, (4.7) 

where 1J.*=~-~'+2(1J.4+m+m) and the sum is over 
Jl~A.lll'~'X'LL'p.a. Thus the cross sections, which are 
the goal of this study, are exhibited explicitly in terms 
of the solutions of an integral equation. 

The form chosen for the presentation of the cross 
section, as a series in what are essentially spherical 
harmonics of the initial and final angles, is believed to 
be quite significant. It is clearly not limited to the case 
here considered, but rather should hold for any scat­
tering process, since it is a very natural development 
of the group-theoretical formalism. A similar relation 
has been given by Blatt and Biedenharn1il in connection 
with nuclear scattering, and also by the present authors 
in connection with a limited approximation.16 While 
there is some question of the rapidity of convergence of 
the series, its use is expected to be extremely valuable 
in the kinetic theory of gases, since there the cross 
sections occur as variously weighted angular averages. 
Thus, by use of the orthogonality relations among the 
spherical harmonics it would be possible to obviate 
both the labor and inaccuracy of a numerical inte­
gration. 

S. CROSS SECTIONS: UNPOLARIZED BEAMS 

Many physical systems are such that the distribution 
among the quantum numbers ma, mb is uniform. Such 
is the case at equilibrium, of course, and may very well 
remain so at conditions sufficiently near equilibrium. 
Such would also be the case in a typical molecular beam 
scattering experiment. Since the cross section is defined 
as the number of particles per unit solid angle per unit 
initial flux, the proper average to use in such situations 
is one averaged over incoming particles and summed 

16 J. M. Blatt and L. C. Biedenham, Revs. Modem Phys. 24, 
249 (1952). 

16 G. Gioumousis and C. F. Curtiss, University of Wisconsin 
Naval Research Laboratory Rept. OOR-8 (1953). 

over outgoing. On noting that there are 2/+ 1 values of 
m for each I, we define17 

u(lalb,T I talb,R) = [(21a+ 1) (21b+ 1)]-1 

XI: u(lamalbmb,Tllamalbmb,R), (5.1) 

where the sum is over m"mbmamb• The cross section 
coefficients u(la .. ·jXaX4IJ.411a ... ) of Eq. (4.6) are aver­
aged similarly. 

Inspection of Eq. (4.7) shows that the indices m as 
well as the dummy index P.a occur only in known factors, 
either in Clebsch-Gordan coefficients or in exponents. 
Let the summation be changed to one over mil. and 
m=ma+mb. Then the following sum, 

I: C(lalbl,m''', m-ma)C(lalbl',ma, m-ma) =011', (5.2) 
rna 

as well as a similar one over barred indices, is seen to 
occur. The sum over m leads to a Racah function, 

m 

= (-1)u+LHH'[(2L+1)(2L'+1)Ji 

XC(LL'A.4, -P.a, P.3-1J.4)W(L~L'X'; lxa), (5.3) 

while the sum over m yields 

( -1)l*[(2L+l)(2L'+1)Ji 

XC(LL'>'a, -lJ.a, lJ.a-p.4)W(L~L'~; lxa), (5.4) 

where 1*=1+x3+L+L'. Finally, a sum over p'a gives 

I: C(LL'A.a, -lJ.a, lJ.a-1J.4)C(LL'>'4, -p'a, 1J.3-P.4) =O}.aX4. 

(5.5) 

In the process of evaluating the sums over m's and P.a, 
the index P.4 no longer appears in any Clebsch-Gordan 
coefficient. On noting that 

D(>'3Jt.O IT-I) = (-1)p'D(XaO-P.41 T), 

we have that 

= L D(A.aOiJ.41 R)D(XaIJ.40/ T-I) 
p, 

(5.6) 

Combination of Eqs. (5.2-6) yields the following form 
for the cross section: 

u(lalbTllalbR) = I: u(lalb; lalb I Xa)D(XaOO I RT-I), (S.7) 
Xa 

11 The vibrational quantum numbers play no role in the con­
siderations of this section and thus need not be written. 



                                                                                                                                    

MOLECULAR COLLISIONS. II 103 

where 

U(la[b; latblAs) 

= [k(lalb)jk(lalb)J[ (21a+ 1) (21b+ 1)J-l 
X2: iA*(2L+l)(2L'+l)(2~+1)(2~'+1) 
XC(~~/A300)C(AA'A.OO)W(LAL'A'; lAs) 
XW(L~L'~'; lAa)f(la{bl~; L; laNA) 

Xf(laN~/; L'; lalblA')*, (5.8) 

where the sum isoverll~A~'~LL', and A *=~- ~/+2(I+l). 
The virtue of such an averaging procedure, where it is 
valid, is obvious. Thus Eq. (5.8) is summed over eight 
indices compared to the 11 in Eq. (4.7), and the sum 
in Eq. (5.7) is over one index compared to the three in 
Eq. (4.6). Further, Eq. (5.7) shows that the cross section 
is now only a function of the angle between the incoming 
and outgoing directions, and there is no longer any 
preferred direction in space, which is a reasonable result. 

6. CERTAIN SPECIAL CASES 

The use of group theory makes it possible to exploit 
whatever symmetries may exist in any particular 
problem. As a first example, the effect of the symmetry 
of the potential will be considered. We discuss in par­
ticular the case in which a or b or both are homo­
nuclear, and the case in which a and b are identical. 

First consider a rotation R used to specify the direc­
tion of a vector v. Let R' be the rotation for the dia­
metrically opposite vector - v. Then it is easily shown 
thatlS 

D(IOmIR') = (-l)ID(IOmIR). (6.1) 

where it should be noted that these representation 
coefficients are not functions of the first Eulerian angle, 
the one which is arbitrary. 

Now if both ends of a are the same, the potential 
energy function, expressed in R, Ra, Rb, is unchanged 
if Ra is replaced by Ra'. Thus 

V (rrflrb,RaR-I,RbR-l) = V (rrflrb,Ra'R-l ,RbR-I) , 

or by Eqs. (2.5) and (6.1), 

2: (-1)81+82v(l1121-'21 rrarb)D(lIOsil Ra) 
lll2J.I.2S1Si 

XD(120s21 Rb)D(ll- S1/-I2 i R)D(lz-S2- 1-'21 R) 

= 2: (-1)"1+32v(lII21-'21 rrarb) (-1)hD{Msl iRa) 
11121-'251S2 

On comparing terms, it is seen that v(1112u21"') is 
zero unless II is even. Similarly, if b is homonuclear v 
is zero unless 12 is even. There is no restriction on U2. 

The condition on the potential if a and b are the 
same is 

18 G. Gioumousis, University of Wisconsin Naval Research 
Laboratory Rept. WIS-NSF-5 (1955), p. 135. 

which leads to the series 

V (rrarb,RaR-I,RbR-I) 

= 2: ( -1)81+82V(ltl21-'2! rrarb)D(ltQSll Rb) 
1112P2S1S2la 

X D (120s2 1 Ra)c (llIJa- SI- Sz)C (M2IaI-'Z- I-'z) 

XD(laO- SI- S2I R') 

by Eq. (2.5) and the Clebsch-Gordan series. The two 
equations4•11 

D(l3,0, -Sl-S2IR') (-1)13D(la,0, -st-szIR) 

and 
C(lllzl.1-'2- pz) = (-1) It+ 1t+13('(llMa- P2P2) 

yield, on summing over 13, a different Clebsch-Gordan 
series equal to 

( -1)lt+12D(lI-1-'2-s1IR)D(121L2-S21R) 

= (-1) It+l2( -1)"+"D(llSlI-'2/ R-I)D(12s2-1-'2/ R-I). 

Substitution of the above into the equation for V and 
interchanging the indices II and 12 yields 

V (rrarbS"Sb) = 2: (-1) It+ 12v(MlI-'2i rrarb) 

XD(1201-'21 Sb)D(llO- 1-'21 Sa), 

which on comparison with Eq. (2.4) yields 

V (11121-12 I rrarb) = ( -1) It+12v(121tI-'21 rrarb) 

as the condition that the molecules a and b be identical. 
In much the same way, it is possible to show that 

v (Itl2l-'z I rrarb) = v(l112- 1-'21 rrarb) * 
is the condition that the potential is real; it thus must 
hold in all cases. 

These relations show clearly in what ways the form 
of the potential is limited under various conditions. 
There are similar restrictions in the number of terms 
which can appear iu the series such as Eqs. (3.10), 
(4.7), and (5.8), as a result of the triangle conditiou on 
the C(jdd31ntmZ), that is, that the coefficient is zero 
unless6 

lh- j21 ~ja~jI+j2' 

and the very similar conditions on the Racah coe­
ficients. Further, the rule that C(jd2jaOO) is zero 
unless jI+ j2+ ja is even restricts the indices, Al and A2 
of the matrix element v(· .. j AIA21-'2; ••• ) to the same 
parity as l"+la' and lb+lb' in Eq. (3.10), while a similar 
restriction holds with respect to ~, ~', and 1.3, and A, 
A', and Aa from Eq. (5.8). 

Since examination of special cases is often more 
enlightening than the perusal of generalities, let us 
consider the form of Eqs. (3.10) and (5.8) for the 
evaluation of the cross section coefficients 0'(00; 02; Aa), 
that is, for a collision in which one molecule remains in 
its ground state and the other is raised from the ground 
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to the second excited state. From Eq. (3.10), since 1"=0, 
lb= 2 then 1= 2. The second coefficient gives 

IA-LI ~2~A+L 

and the third and fifth Al = la' and A2= lb', lb' ± 1, respec­
tively. 

As mentioned previously, only the first few values of 
A3 in Eq. (5.8) are needed for the application to the 
kinetic theory of gasses. Apart from a factor of four, the 
coefficient for A3= 0 is the total cross section, and has 
the simple form 

q(lalh; lath I 0) = (kj k)[ (21"+ 1)(2lb+ 1)J-1 

x}: (2L+l) If(iaibfi..; L; laNA) 12, 

where the sum is over LAXll. Similarly, for Aa= 1 the 
parity rule and the triangle rule impose the restriction 
X' = X± 1 and A' = A± 1, while for Aa= 2 the restriction 
is X' = X, X±2 and A' =A, X±2. 

Similar selection rules arise in various approximation 
schemes. Thus to first order approximation (say, the 
Born approximation, or distorted wave) if only the 
Al = 1, A2= 1 terms in the potential are considered the 
selection rule is dla=O, ±1, dlo=O, ±1. Similarly, if a 
is homonuclear, by the result following Eq. (6.2) only 

the even Al give nonzero terms in the potential. Thus, 
to first order, dla=±1 is forbidden and dl"=O, ±2 
permitted. 

7. CONCLUSION 

The work described in this paper has been based on 
the point of view that the introduction of approxima­
tions and simplifying assumptions should be delayed 
as long as possible. (It is well recognized that such a 
course also delays one's arrival to the point of numerical 
results.) Thus the results herein developed, the sim­
plifications attendant on the use of group theory and 
the expansion of the cross section in spherical harmonics, 
are valid without significant approximation. It is 
believed that the problem has been carried as far as 
conveniently possible in its full generality, so that 
further work must be based on special cases and sim­
plifying assumptions. 

N ole added in proof. Since this work was completed, a paper by 
Arthurs and Dalgarno [Proc. Roy. Soc. (London) A256, 540 
(1960)J has appeared which covers collisions where one molecule 
is a rigid rotator and the other spherical. The major difference 
between their work and ours lies in their use of an incoming beam 
restricted to the z-axis direction. This, in general, is incorrect, but 
they restrict themselves to cross sections averaged over m's and 
for this case [as we show in Eq. (5.8)J the restriction is valid. 
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7. CONCLUSION 

The work described in this paper has been based on 
the point of view that the introduction of approxima­
tions and simplifying assumptions should be delayed 
as long as possible. (It is well recognized that such a 
course also delays one's arrival to the point of numerical 
results.) Thus the results herein developed, the sim­
plifications attendant on the use of group theory and 
the expansion of the cross section in spherical harmonics, 
are valid without significant approximation. It is 
believed that the problem has been carried as far as 
conveniently possible in its full generality, so that 
further work must be based on special cases and sim­
plifying assumptions. 

N ole added in proof. Since this work was completed, a paper by 
Arthurs and Dalgarno [Proc. Roy. Soc. (London) A256, 540 
(1960)J has appeared which covers collisions where one molecule 
is a rigid rotator and the other spherical. The major difference 
between their work and ours lies in their use of an incoming beam 
restricted to the z-axis direction. This, in general, is incorrect, but 
they restrict themselves to cross sections averaged over m's and 
for this case [as we show in Eq. (5.8)J the restriction is valid. 
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The pseudopotential method is used to study a special type of flow for a Bose system of hard spheres. 
In the first-order approximation, the wave function of the entire system is assumed to be the product of 
~dentic~l single-particl~ wave fU,'lctions, which .in general are time-dependent. Such a flow is necessarily 
HrotatlOnal, and the smgle-partIcle wave functIOn satisfies a Schrodinger equation with a nonlinear self­
coupling term. On the basis of this equation of motion, the following properties of the Bose system are 
discussed: the effect of the rigid wall, the moment of inertia, the compressional wave, and a type of "vortex 
filament." In the second-order approximation, the wave function of the system is expressed in terms of two 
functions such that one of .them describes the single-particle state suitable for most of the particles while 
the other one describes the pair excitations. The much more complicated equations of motion are found 
but in this approximation the flow is no longer strictly irrotational. The compressional waves are als~ 
studied in the second-order approximation. 

1. INTRODUCTION 

RECENTLY, there has been some interest in the 
properties of a dilute Bose system of hard spheres, 

since this system serves as a model of superfluids to a 
certain extent. By using the grand canonical ensemble 
and its modification (the x-ensemble), Lee and Yang! 
succeeded in obtaining in great detail the equilibrium 
properties of such a system. Because of this remarkable 
theory, the low-density expansions of the thermo­
dynamic functions for this system may be considered 
to be well understood. 

Since the quantum theory of transport phenomena 
is not nearly as well developed as equilibrium statistical 
mechanics, much less is known about the nonequi­
librium properties of such a system. By using the 
method of the pseudopotential, Lee and Yang2 obtained 
equations of motion for this system starting from the 
microscopic picture. Their equations of motion give a 
great deal of insight for many problems, particularly 
the question of the two sound speeds; however, the 
question whether the superfluid flow is irrotational is 
not resolved in their paper. In the derivation of these 
equations of motion, concepts of classical kinetic theory 
are used. Alternatively, also from the point of view of 
the pseudopotential, Lee, Huang, and Yang3 suggested 
in an earlier paper that the superfluid flow of a dilute 
Bose system of hard spheres may be represented as the 
condensation of a finite fraction of the particles into a 
single-particle state that may not be an eigenstate of 
the momentum operator. It is the purpose here to 
develop in some detail a special case of this alternative, 
since it has the advantage of not making use of any 
concept bf)rrowed from classical kinetic theory. 

* Supported in part by the Office of Naval Research and the 
Atomic Energy Commission. 
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25 (1959); 117, 12, 22, 897 (1960). ' 
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(1957). 

In the special case to be considered, the temperature 
of the system is assumed to be extremely low so that 
no average over states need to be considered and that 
the condensation into a single-particle state is approxi­
mately complete. Except in the case of a uniform flow, 
the velocity of the flow must change from point to 
point. Since the velocity of the flow is related to the 
phase of the single-particle wave function, it is thus 
mandatory to allow for an arbitrary phase variation. 
Because .of the conservation of the number of particles, 
a nonumform flow must lead to density variations. It 
is therefore desirable to generalize' the form (57) of 
footnote reference 3 to a function whose absolute value 
may not be unity. To illustrate this point, consider the 
special case of extremely low densities. Here the inter­
action between the particles may be neglected alto­
gether, and the Schrodinger equation for the system 
may be solved by separation of the variables. If all 
particles are in the same single-particle state, then the 
wave function of the system is the product of identical 
single-particle wave functions. Furthermore, the single-
particle wave function must satisfy the one-particle 
Schrodinger equation without any potential. This 
equation admits many solutions, but the only ones 
with constant absolute magnitudes are those corre­
sponding to plane waves. Therefore, in this approxi­
mation as studied in Secs. 2-5, the wave function of the 
system is assumed to be the product of identical single­
particle wave functions <I>(r,t). 

In the case of periodic boundary conditions, the 
specialization of this first approximation to the lowest 
stationary state merely yields the unperturbed ground 
state, i.e., the ground state of the system without hard­
sphere interactions. When the method of the pseudo­
potential is used, it is known3 that a better approxima­
tion to the ground-state wave function may be obtained 
by allowing excitations into pairs, i.e., by taking into 
consideration the transitions between two particles both 
in the zero-momentum state and two particles in non-
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zero momentum states of opposite momenta. In the 
second-order approximation (as studied in Secs. 6--9), 
the wave function of the system is assumed to take on 
a somewhat more complicated form so that precisely 
these transitions are taken into account. The specific 
form used is given by (6.1) and (6.2), and Sec. 6 is 
devoted to the development of a formalism dealing with 
wave functions of this form. In Sec. 7, the formalism is 
applied to the Bose system of hard spheres to get the 
equations of motion in the second-order approximation. 
As expected, the equations of motion are rather com­
plicated. Some of the simple properties of these equa­
tions are considered in Sec. 8; the compressional waves 
are studied in Sec. 9, where the conclusion is reached 
that there is a difference between a phonon and a com­
pressional wave in the second-order approximation. 

The Hamiltonian to be studied may be specified as 
follows. A system of hard spheres is a collection of N 
pairwise interacting particles with the Hamiltonian 
(h=2m=1) 

N 

I:P?+I: VO(rij), (1.1) 
i=l i<i 

where 
rij= jri-rjj, (1.2) 

and 

Vo(r)={: 
if r>a, 

(1.3) 
if r~ a. 

Here a is the diameter of the hard spheres, and is also 
the scattering length. Since nonequilibrium properties 
are to be discussed, the boundary condition for the 
confining box remains unspecified for the time being. 

According to the method of the pseudopotential of 
Huang and Yang,4 the Hamiltonian (1.1) may be 
replaced in a certain approximation by 

H'=T+V', (1.4) 
with 

T=I:iN, (1.5) 
and 

V'=47ra I: O(ri-rj)(ajarij)rij. (1.6) 
i"'i 

Unlike the case of the calculation of the ground-state 
energy per particle, it is sufficient for the present con­
sideration to use 

where 
H=T+V, 

V=4?ra L o(ri-rj), 
i;;6i 

(1.7) 

(1.8) 

instead of (1.4). The only difficulty in using H instead 
of H' is the appearance of a familiar type of divergence. 
This may be removed by the method described in Sec. 1 
of footnote reference 3. Thus H is the Hamiltonian to 
be studied for a Bose system. 

4 K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957). 

2. EQUATION OF MOTION IN FIRST-ORDER 
APPROXIMATION 

As in all previous treatments of problems of this 
kind, it is convenient to rewrite the pseudo-Hamiltonian 
H in the language of quantized fields: 

(2.1) 

and 

V =4?ra f dl1/;*(r)2if;(r)2, (2.2) 

where I/I(r) satisfies the usual commutation rules for a 
boson field. If the state <I> is normalized by 

(2.3) 

where n is the volume of the confining box, then the 
creation and annihilation operators for the state <I> may 
be defined by 

ao*(t) = n-! f dr.y*(r)<I>(r,t), 

(2.4) 

ao(t) = n-i f dl1/; (r)<I>* (r,t). 

From (2.3), it follows that ao(t) and ao*~t) satisfy the 
usual commutation rule for equal times 

[ao(t),ao*(t)J= 1. 

The parts of 1/1* and 1/1 corresponding to this one state 
may be singled out as follows: 

1/1* (r) =1/10* (r,t) +1/11* (r,t), 
(2.5) 

I/I(r) =""0(r,/)+I/I1 (r,l), 
where 

1/10* (r,t) = n-tao* (t)<I>*(r,t), 
(2.6) 

1/10 (r,t) = n-iao(t)<I>(r,t). 

In the Schrodinger picture, I/I*(r) and I/I(r) are time 
independent, but 1/10*, 1/10, 1/11*' and 1/11 all may depend on 
the time. 

In the equilibrium theory of Lee, Huang, and Yang,a 
the choice is made that <I> (r,t) = 1. Then ao* and ao are 
considered to be in some sense large compared with the 
creation and annihilation operators for other single­
particle momentum states. For the same reason, in the 
present procedure 1/10* and 1/10 are considered to be large 
compared with 1/11* and 1/11. With (2.5) substituted in 
the Hamiltonian or in any other operator, terms may 
be classified according to the numbers of times 1/11* and 
""1 appear. As a first approximation only terms of zeroth 
order or first order in 1/11* and 1/11 are to be kept. Even 
quadratic terms are dropped. Thus, for example, the 
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tolal number of particles is given by 

x = f dn/t* (r)'" (r) 

= ao* (t)ao(t) + f dn/tl*(r)"'l(r). (2.7) 

For the first,order approximation, (2.7) IS simply 
reduced to 

.Y "-'ao* (t)ao(t). (2.8) 

Note that time-independent operators may become 
time dependent in this approximation. Similarly, the 
kinetic energy T is approximated by 

T,,-,ao*(t)ao(t)f(t)-Q-!ao(t) f dn/tl*(r,t)N(r,t) 

- n-!ao*(t) f dn/tl(r,t)N*(r,t), (2.9) 

where 

where 
po=N/n (2.15) 

is the average or equilibrium density of the system. 
The Hamiltonian 

(2.16) 

is to be studied in the Schrodinger picture, because 
generalizations seem to be simpler to carry out in this 
picture. Since H(l) is linear in "'1, it is possible to have 
a Schrodinger state vector of the form 

'lI(t) = (N!)-lao*(t)Nlvac), 

where Ivac) is the state defined by 

"'(r) / vac)=O 

(2.17) 

(2.18) 

for all r. The state vector 'lI(t) satisfies the Schrodinger 
equation 

H(I)'lI(t) = i(a/dt)'lI(t). (2.19) 

As shown in Appendix A, this implies the following 
equation of motion for ao*(t): 

i(a/ at)ao*(t) = [H(I),ao*(t)]+[f(t)+411'apoW) ]ao*(t). 

(2.10) (2.20) 

Attention has been restricted to those boundary con­
ditions for which the integration by parts does not yield 
a surface term. The same procedure of approximation 
may be applied to the Vof (2.2) to yield 

V"-'411'aQ-1ao*(t)2ao(tn'(t) 

+811'an- lao* (t)ao(t)2 f dn/tl* (r,t) 1 <1>( r,t) /2<1>( r,t) 

+ 811'a!rl ao* (t)2ao(t) f dn/tl(r,t) 1 <I>(r,t) /2<1>*(r,t), 

where 
(2.11) 

When (2.8) is used in (2.9) and (2.11), the results are 
called TI and Vi, indicating first-order approximation 

Tl = Nf(t)- Q-!ao(t) f dn/tl* (r,t) V2<f>(r,t) 

-Q-!ao*(t) f dn/tl(r,t)N*(r,t), (2.13) 

and 

VI = 41!'ap{v!'(t) + 2Q-iao(t) f dn/tl*(r,t) / <I> (r,t) /2<f>(r,t) 

+ 2Q-1ao* (t) f dn/tl(r,t) / <I> (r,t) /2<f>*(r,t) l (2.14) 

This in turn implies an equation of motion for <p(r,t) : 

i( 8/ at)<I>(r,t) = [ - V2+811'apo 1 <I> (r,t) 12 

-411'apo!'(t)]<I>(r,t). (2.21) 

As may be expected, this equation is in the form of a 
Schrodinger equation with a self-coupling term of third 
order. Note that the normalization (2.3) is consistant 
with (2.21). 

3. SOME SIMPLE PROPERTIES OF THE EQUATION 
OF MOTION IN FIRST-ORDER 

APPROXIMATION 

A. Interpretation 

When <I> is written in the form 

<I>(r,t)=A(r,t) exp[i¢(r,t)], 

the velocity of the fluid may be defined by 

v(r,t) = 2Vr/>(r,t), 

while the number density of the fluid is 

p(r,t) = poA (r,t)2. 

The normalization (2.3) gives 

f dr p(r,t) = iV, 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

which justifies the term "number density." In terms of 
A and v, the imaginary and real parts of the equation 
of motion (2.21) give, respectively, 

(3.5) 
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with (2.21). 

3. SOME SIMPLE PROPERTIES OF THE EQUATION 
OF MOTION IN FIRST-ORDER 

APPROXIMATION 
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The normalization (2.3) gives 
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(3.4) 

which justifies the term "number density." In terms of 
A and v, the imaginary and real parts of the equation 
of motion (2.21) give, respectively, 
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and 

p[ av / at+ (v· V')v]= - V' (811"ap2) + 2pV'(p-tV'2pt). (3.6) 

Equation (3.5) is the usual equation of continuity. 
Since the mass of each particle has been taken to be t, 
the mass density Pm is tp. Furthermore, the static 
pressure at absolute zero is known to be3 

The lowest eigenfunction is thus given by 

<t(x) = <t(L/2) sn[2xK(k)/L], (3.14) 

where sn is the elliptic sine function of modulus k, 
<t(L/2) is given by 

<t(L/2) = (1I"apo)-tkK(k)/L, (3.15) 

p=411"ap2. (3.7) and k is determined by 

Thus (3.6) is equivalent to 

where D/ Dt denotes Lagrangian derivative. Equation 
(3.2) implies that 

V'Xv(r,t)=O. (3.9) 

Except for the last term in (3.8), the Eqs. (3.5), (3.8), 
and (3.9) are the usual hydrodynamic equations for a 
superfluid5 in the absence of normal fluid. Note, how­
ever, that (3.9) means that the fluid motion is irrota­
tional in the present case. Since the present approach 
concerns a very special case of superfluid flow, the 
question whether superfluid motion can be rotational 
in general is not touched upon. 

B. One-Dimensional Problem in Steady State 

Since it is a nonlinear differential equation, (2.21) 
can be explicitly integrated only in very special cases. 
In the steady state, the one-dimensional problem is 
governed by 

[d2/ dxL 811"apo I <I> (x) I 2+ 41I"apo.t+ E]<I>(x) = O. (3.10) 

For a periodic box, the solutions are simply exp(ikx) 
with the corresponding energy k2+41I"apo. This is in 
agreement with the results of Lee, Huang, and Yang.a,6 

Therefore, for periodic boundary conditions, it is ad­
missible to use unperturbed wave functions, but take 
the extra energy 411"apo per particle into account. 

Equation (3.10) can also be solved with rigid walls 
at 0 and L. In this case the boundary conditions are 

<I> (0) = <I>(L) =0. (3.11) 

It then follows from the equation of continuity (3.5) 
that 

v(x)=O. (3.12) 

Without loss of generality, <I>(x) can be taken to be 
real. Moreover, the energy of the nth eigenstate of 
(3.10) for the length L is the same as the ground-state 
energy for the length L/ n, and the eigenfunctions are 
very simply related. Therefore, it is sufficient to consider 
the ground state only. For this state (3.11) may be 
replaced by 

<I>(O)=O and a<I>/aXI"'_L/2=0. (3.13) ----
• F. London, Super fluids (John Wiley & Sons, Inc., New York, 

1954), Vol. II, pp. 129-130. 
• T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1958). 

K (k)[K (k) - E(k)]= 1I"apoL2. (3.16) 

Here K(k) and E(k) are complete elliptic integrals of 
the first and second kinds, respectively. From this 
solution it is found that 

and 
.t= (3k2)-I<I> (L/2)2[2 (1 +k2)-<I>(L/2)2], (3.17) 

E= 41I"apo (3k2)-I<I> (L/2)2[1 +k2+<I>(L/2)2]' (3.18) 

It is a simple matter to evaluate these formulas in the 
limits of large and small L. The results are 

L»(apo)-t: k= 1-8 exp[ - (411"apo)tL], 

<I> (L/2) = 1 + (411"apo)-tL-t, 

.t= 1 +H411"apo)-lL-I, (3.19) 

E= 41I"apo[1 + (8/3) (41I"apo)-tL-l], 
and 

<I> (x) = tanh (41I"apo)!x for 0 ~ x ~ L/2. 

L«(apo)-t: k= (811"apo)tL/1I", 

.t=~ 

E= (11"/ L)2+611"apo, 
and 

<I> (x) = V2 sin (1I"x/ L). 

C. Question of Rigid Boundaries 

(3.20) 

The correlation length at absolute zero is defined by3 

(3.21) 

According to (3.19), when L>>ro, <I>(x) differs signi­
ficantly from 1 only when x or L- x is of the order 
of 1'0. Therefore, for a simply connected region with a 
smooth rigid boundary such that all radii of curvature 
are much larger than the correlation length, the lowest 
eigenfunction is given approximately by 

<I> (r) = tanh[ (41I"apo) ~r min], (3.22) 

where rmin is the minimum distance from r to the rigid 
boundary. 

Equation (3.22) implies that the distribution of 
density is approximately constant in the confining box 
except within about one correlation length of the rigid 
boundary. In particular, the wave function is quite 
different from the unperturbed wave function corre­
sponding to a=O, in which case the correlation length 
is infinite. This point has been emphasized by Lee, 
Huang, and Yang,a and is explicitly demonstrated here. 
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On the other hand, as seen from (3.2) for the one­
dimensional problem, <I> (x) is approximately independen t 
of a when L«1'o. In general, this may be expected to be 
true if a is so small that the correlation length is much 
larger than all macroscopic dimensions of the confining 
box. 

This consideration may be used to explain the 
paradox of Eyges,7 who obtained the following formula 
for the ground-state energy per particle: 

E(Eyges)= (27/4)7rapo (3.23) 

for the case of the rigid boundary. This is in apparent 
contradiction with the earlier result 47rapo of Huang and 
Yang.4 The explanation is that, with rigid walls, 47rapo 
holds for a fixed low density po but N -7 00, while the 
result (3.23) is valid under the condition of very large 
correlation length or 

(3.24) 

There can thus be no overlap in the ranges of validity. 
The problem of flow in a large pipe with a smooth 

rigid wall may be studied by applying a Galilean trans­
formation to (3.22). If the pipe is parallel to the x axis, 
the velocity and density profiles are approximately 

and 
(3.25) 

These profiles are quite different from those for the 
flow of water, say, at low Reynold's numbers. 

4. ROTATING BUCKET 

In this section, the moment of inertia of a Bose 
system is to be considered on the basis of (2.21). The 
correlation length is assumed to be small compared with 
the macroscopic dimensions of the confining box; thus 
the noninteracting case with a=O is not included. The 
wall of the confining box, or the bucket, is assumed to 
be rigid. Let this rigid boundary be represented by an 
external potential Ve. If it rotates uniformly with the 
angular speed w, then 

Ve= Veer, fJ-wt, z), (4.1) 

where the axis of rotation is chosen to be the z axis for 
the cylindrical coordinate system. According to (2.21), 
the equation of motion is 

i«(}jat)<I>(1',fJ,z; [- V2+87rapol<I>(r,fJ,z; t) 12 
-41I"apot(t)+ Veer, fJ-wt, z)]<I>(1',fJ,z; t). (4.2) 

The canonical transformation to the rotating coordinate 
system is 

<I>(r,fJ,z; t)=exp( -iwtp6)<I>1(1',O,z; t) 
= <I> 1 (1', fJ-wt, Zi t). (4.3) 

In terms of <I>l, (4.2) becomes 

i «() / (}t- w() / (j(J)<I>I (1',O,z; t) 
= [ - V2+87rapo 1 <I>I (1',O,z; t) 12 
-47rapot(t)+ Ve(1',fJ,z)]<I>l(1',O,Zi t). (4.4) 

Therefore, in the case of the cylindrical rigid boundary, 
the time-independent problem is governed by 

(X-iW(}/(}{)<I>l(1',fJ) = [- V2+87rapol<I>1(1',fJ) 12 
-41I"apot]<I>1(r,fJ), (4.5) 

with the condition on the boundary S 

<I>1=0. (4.6) 

Note that X is the energy in the rotating system, while 
the expectation value of the energy in the fixed system is 

E={<I> I [ - V2+87rapo !<I> I L47rapot] I <I» 

=r+41I"apot, (4.7) 

where r is defined by (2.10). 
Similar to (3.1), let 

<I>I (r,fJ) = A 1 (1',0) exp[il/>l (1',fJ)]. (4.8) 

Then the imaginary and real parts of (4.5) give, respec­
tively, 

A 1V21/>1+ 2V Al· VI/>l =w(}A 1/ (}o, (4.9) 
and 

- V2A I+A I I VI/>II2+87rap()<4 1
3-41I"apot Al 

=XAI+wAIal/>l/ae. (4.10) 

From (3.12), the velocity is everywhere zero in the one­
dimensional problem with stationary rigid walls. By a 
Galilean transformation, the velocity is the same as 
that of the walls for translational motion. Therefore, 
for the present problem of the rotating bucket, the 
normal component of the fluid velocity at the wall is 
given by 

(4.11) 

on S, where Vn is the normal component of the wall 
velocity. If n is the unit outward normal, and 6 is the 
unit vector in the () direction, then 

vn =wr6·n. (4.12) 

When w is not too large, the fluid density poA 12 is not 
expected to vary greatly over one correlation length, 
except near S. Therefore, except near S, Al and <PI may 
be obtained correctly after neglecting the term - V2 Al 
in (4.10). However, with this approximation, the 
boundary condition (4.6) cannot be satisfied, and (4.11) 
may be used in its place. In other words, the functions 
Al and 1/>1 are to be determined, except an additive 
constant for <PI, by (4.9) and 

I VcplI2+87rapoA 12-47rapot=X+WaI/>1/ afJ (4.13) 
with 

(4.14) 7 L. Eyges, Ann. Phys. 2, 101 (1957). The author is unable to 
verify Eyges' result, and gets instead an energy larger by a factor 
~~ 00£ 
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Attention is now restricted to the case of extremely where 
small w. In this case, the appropriate expansions are 

(4.27) 

and 

Al= 1+w2A2+0(W4
), 

CPl = WCP2+0 (w3
) , 

f=1+0(w4), 

A= 47rapo+w2A2+0(W4), 
(4.15) 

The moment of inertia per particle J in the limit w ~ 0 
may be defined by 

E=47rapo+tw2J +O(w4). 

With (4.15), (4.9) and (4.13) become 

vnCP2=0 
and 

where A2 is determined by the normalization 

The boundary condition on S 

aCP2/ an = trO· n 

then yields the results 

( 4.16) 

(4.17) 

( 4.19) 

(4.20) 

As usual, the moment of inertia can be decomposed 
into that of the center of mass and the moment of 
inertia about the center of mass. To see this, let R be 
the position vector of the center of mass, (r',O') be a 
cylindrical coordinate system about the center of mass, 
so that 

r'=r-R (4.22) 
and 

J drr'=O. (4.23) 

is the moment of inertia per particle about the center 
of mass. Equation (4.26) is the desired result; note that 
the mass of each particle has been taken as t. 

Unlike the case of the rigid body, the moment of 
inertia here depends very much on the shape of the 
confining box. For example, the moment of inertia J 
about the center of mass is zero when the particles are 
confined in a circular cylinder, but is approximately 
[(4/7r2)-i- (r/128)]L2 when confined in a half­
circular cylinder of radius L. It may be of some interest 
to consider the following model of the circular glinder 
with a rough wall. With the complex variable 

(4.28) 

w=L(z+Czn). (4.29) 

In this particular model, the interior of the rough 
circular cylinder of radius L is defined to be the set such 
that I z I < 1. Here the following conditions are imposed 
on C and n: 

(4.30) 

For this definition of the model to be meaningful, it is 
necessary that the analytic function w(z) be univalent 
in the open disk I z I < 1. This imposes the condition 

Cn~1. (4.31) 

The calculation of the moment of inertia in this case 
is now a straightforward exercise in complex variable. 
The result is 

(4.32) 

If a thickness tr is defined to represent the thickness of 
the layer following the wall, 

J = tD(2tr/ L), 
then 

(4.33) 

(4.34) 

If CP2' is defined by 

V'2CP2' = 0 and aCP2' / an = tr' 0' . n 

on S, then the difference is 

This is of the order of magnitude of the amplitude of 
the ripples CL on the boundary under the conditions 

(4.24) of (4.30) and (4.31). The bulk of the liquid does not 
follow the rotational motion. 

CP2-CP2' = tR0· r2, (4.25) 

where 0 is the unit vector at R in the 0 direction. It is 
now a consequence of (4.23) that 

S. LINEARIZED EQUATION IN FIRST-ORDER 
APPROXIMATION 

A. Linearization 

Let <po(r,t) be a solution of (2.21), and 

<P (r,t) = <Po (r,t) + E<Pl (r,t), (5.1) 

where <P and <Po are normalized according to (2.3), and 
(4.26) E is a very small real number. It follows from the nor-
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(4.28) 

w=L(z+Czn). (4.29) 
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(4.30) 
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Cn~1. (4.31) 
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(4.32) 

If a thickness tr is defined to represent the thickness of 
the layer following the wall, 

J = tD(2tr/ L), 
then 

(4.33) 

(4.34) 

If CP2' is defined by 

V'2CP2' = 0 and aCP2' / an = tr' 0' . n 

on S, then the difference is 

This is of the order of magnitude of the amplitude of 
the ripples CL on the boundary under the conditions 

(4.24) of (4.30) and (4.31). The bulk of the liquid does not 
follow the rotational motion. 

CP2-CP2' = tR0· r2, (4.25) 

where 0 is the unit vector at R in the 0 direction. It is 
now a consequence of (4.23) that 

S. LINEARIZED EQUATION IN FIRST-ORDER 
APPROXIMATION 

A. Linearization 

Let <po(r,t) be a solution of (2.21), and 

<P (r,t) = <Po (r,t) + E<Pl (r,t), (5.1) 

where <P and <Po are normalized according to (2.3), and 
(4.26) E is a very small real number. It follows from the nor-
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malization that A special solution of (5.13) is obtained by assuming 

Re Q-I! <Po(r,t)<PI*(r,t)dr=O. (5.2) j=cos(wt-k·r). (5.16) 

If <P also satisfies (2.21), then <PI satisfies 

ia<P1/ at= - V2<I>1 + 81T'apo (2 1 <Po 1 2<J!1+<P02<J!I*) 
- 41T'apot o<PI- 41T'apot I<PO, (5.3) 

where to is the t for <Po and 

Equation (5.3) is to be referred to as the linearized 
equation. 

It is sometimes convenient to recast the linearized 
equation in a slightly different form by defining j and 
g as follows: 

<PI (r,t) = <Po(r,t)[f(r,t)+ig( r,/) J. (5.5) 
If 

In this case, the relation between wand k is 

w= k(k2+ 161T'apo)t. (5.17) 

This is in agreement with the phonon spectrum of Lee, 
Huang, and Yang.s Indeed, in this case, the solution 
<P(r,t) represents a sinusoidal variation of density and 
hence a sound wave in the ordinary sense. IHoreover, 
in this very special case (5.15) is satisfied. 

C. Cylindrical Wave 

Consider a circular cylinder of radius L. Let <Po be 
given by the right-hand member of (3.22), where it is 
assumed that L is much larger than the correlation 
length. The boundary condition for <PI is then in the 
form that j and g are finite at r= L. By an argument 
used in Sec. 4, the approximation 

Ao(r,/)= 1 (5.18) 

<Po(r,/)=Ao(r,t) exp[Upo(r,/)], (5.6) is used and the boundary condition is replaced by 
then 

aj/dl= - 2A o-lV'A o' V'g- 2V'1/>0' V' j- V2g, 

ag/ at= 2Ao-IV'AO' V'j- 2V'l/>o' V'g+ V'2j 
-161T'apoA.02j+41T'apotl. (5.7) 

B. Plane Wave 

In the special case A 0= 1, it follows from (2.21) that 
1/>0 satisfies 

V21/>0=0 
and 

al/>o/ at = - 1 V'I/>o 12_ 41T'apo. 

With (5.8), the Laplacian of (5.9) gives 

1 V'V'1/>012=0. 

Thus, it follows from (5.9) and (5.10) that 

1/>0= - (41T'apo+ 1 k 12)t+ k· r, 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

where k is a constant vector. By a Galilean trans­
formation, k may be made zero. In this case, the two 
forms (5.3) and (5.7) of the linearized equation are 

ia<P1/ at= - V2<I>1+ 81T'apo (2<P1+<P1*) -41T'apo<P1, (5.12) 

and 
aj/ at= V2g, ag/ at= V'2j-161T'apoj. (5.13) 

It is seen from these equations that the normalization 
for <PI does not change with t if and only if 

1m f dr<P 1(r,t)2=0, (5.14) 

or 

f drj(r,t)g(r,t) =0. (5.15) 

aj/ar= ag/ar=O (5.19) 

at r= L. In this approximation, (5.13) is valid. If the 
angular dependence of j and g are assumed to be of the 
form ei6 , then (5.13) becomes 

aj/at= - (aZ/ar2+r1alar-r2)g, 

ag/at= (a2/ar2+r-1a/ar-r-L 161T'apo)j. 
(5.20) 

The corresponding eigenvalue problem in terms of j 
alone is 

(a2/ar2+r1a/ ar-r2) 

X (a2/ ar2+r1ajar- r 2-161T'apo)j= w2j. (5.21) 

With (5.19), the solution of this eigenvalue problem is 
approximately 

{[w2+ (81T'apo)2]t- 81T'apo} tL= lu', (5.22) 

where lu' is the first zero of It'. Thus 

(5.23) 

This is to be contrasted with the noninteracting case 
a=O, where the energy is proportional to L-2. 

There seems to be some similarity between the 
present solution and the vortex filament of Onsager~ 
and Feynman.9 

6. FORMALISM FOR SECOND-ORDER 
APPROXIMATION 

A. State Vector 

When the system of bosons is in the lowest stationary 
state in a box with periodic boundary conditions, all the 

8 L. On sager, Nuovo cimento SuppI. 6, 249 (1949). 
• R. P. Feynman, Progr. Low Temp. Phys. I, 17 (1955). 
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results obtained so far become trivial in the sense that 
the wave function is independent of the scattering 
length a except in a phase factor. It has been shown by 
Lee, Huang, and Yang3 that in this case of the ground 
state the major effect of the interaction on the wave 
function is the creation and annihilation of pairs of 
opposite momenta. In the second-order approximation, 
a modification is made to include just this effect. In 
this section, a possible formalism is presented to achieve 
just this purpose. The Hamiltonian is assumed to a 
polynomial functional of if;(r) and if;*(r) such that it 
commutes with the number operator N. No specific 
form of the Hamiltonian is used. In the next section, 
this formalism is applied to the Hamiltonian (1.7) to 
get the second-order equations of motion for a dilute 
Bose system of hard spheres. 

Since the creation and annihilation of pairs are the 
important processes, it is assumed that the state vector 
(2.17) is modified in this approximation, to be 

'l1 (t) = m:(t)eP(t) (N !)-!ao* (t)N I vac), (6.1) 

where pet) describes the creation of pairs 

pet) = [2No(t) J-l f drdr'if;l* (r,t)if;l* (r',t) 

XKo(r,r'; t)ao(t)2. (6.2) 

Here 2Yo(t) is the expected number of particles in the 
state ~(r,t) 

N oCt) = OPI (t) = ('l1 (t) I ao* (t)ao(t) I 'l1 (t». (6.3) 

In the following, when there is no confusion, the variable 
t will not be written explicitly. Without loss of gener­
ality, it is possible to choose the Ko of (6.2) such that 

Ko(r',r) =Ko(r,r'), (6.4) 

and 

f d~*(r)Ko(r,r') =0. (6.5) 

The case of the lowest stationary state is discussed in 
Appendix B. 

Since P describes the creation of a pair, it is further 
assumed that the pair created does not consist of two 
excitations very far apart. In other words, the assump­
tion is made that Ko(r',r) is substantially different 
from zero only when I r' - r I is not much larger than a 
characteristic distance, which in turn is much smaller 
than any macroscopic dimension of the confining box. 

Since the state vector 'l1 is normalized, the normaliza­
tion m: is given by 

m:-2 = (N !)-l(vacl aoN(expP*)(expP)ao*N I vac). (6.6) 

This is evaluated in Appendix C. It is useful to define 

the following functions: 

W1(r',r)= f dr"Ko*(r',r")Ko(r",r); (6.7) 

W n(r',r) = f dr"W1(r',r")W ,,-1 (r",r) 

= f dr"Wn_1(r',r")W1(r",r) (6.8) 

for 11;:: 2; 

Kn(r',r)=Kn(r,r')= f dr"Ko(r',r")Wn(r",r) 

= f dr"K n_ 1 (r',r") W1(r",r) (6.9) 

for 11;:: 1 ; 
<Xl 

W(r',r) = L W,,(r',r) ; (6.10) 
n=l 

W(r',r) =o(r'- r)+ W(r',r); (6.11) 

W' (r',r) = W(r',r) - O-~*(r')<l>(r) ; (6.12) 

Q() 

K(r',r) = L Kn(r',r); (6.13) 
n=il 

Wn=g-lf drWn(r,r); (6.14) 

and 

W= El Wn=O-lfdrW(r,r). (6.15) 

In terms of W fI, m: is given by 

00 

m:-2=[1+po-1 L (2n+1)WnJ-i 
n=l 

[ ( 
N N 1)] Xexp N log---;:-+---;:--1 +-W . 
II 0 1\ 0 2po 

(6.16) 

With (6.16), the following rule for finding the ex­
pectation value of an operator may be formulated. 

Rule A (discussed in Appendix C): Consider the 
operator 

where each CPl is either if;l or if;l*' and the numbers a and 
{3 are related so that [S,NJ=O. Carry out the following 
procedure: 

(i) Group rl, ... r2n into 11 pairs. The first member of 
the pair always has a smaller index than the second 
member. 

(ii) :Make the following substitutions for each of the 
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and 

1/t1*(ri)I/II(rj) ~ W(r;,rj), 

1/t1(r;)1/t1*(rj) ~ W'(rj,ri), 

1/t1(ri)1/t1(rj) ~ K(ri,rj), 

1/t1* (r;)1/t1* (rj) ~ K*(r.,rj). 

(iii) Substitute 

This gives a numerical function of r1' .. r2n. 

(6.18) 

(iv) Sum over all distinct groupings. The result is an 
approximate formula for ('It 1 S 1 'It). 

In connection with the equation of motion, the fol­
lowing rule is also useful. 

Rule B (discussed in Appendix D): Consider the 
operators 

and 

such that [S1,N]=[S2,N]=0. Carry out the following 
procedure: 

(i) Form Sa=S(rh' .. r2n,r1',' .. r2"/; a+a', 13+13'). 
(ii) Carry out the steps A(i)-(iii) for Sa. 

(iii) Sum over all groupings with at least one pair of 
the form (r;,r/). 

The result is an approximate formula for 

('It I S IS21 'It)-('lt 1 S 1/ 'It)('lt / S2/ 'It). 

In Appendix E, some properties of a number-dis­
tribution function are discussed. 

B. Variation of the State Vector 

With (6.1) and (6.16), the change of the state vector 
maybe expressed in terms of the corresponding c;hanges 
in <I> and K o. Let a subscript t be used to denote time 
derivative, e.g., 

Kot(r',r)= (a/at)Ko(r',r) = (a/at)Ko(r',r; t). (6.19) 

It follows from (2.3), (6.4), and (6.5) that 

(6.20) 

where B is a real number, 

Kot(r',r) = Kot(r,r'), (6.21) 

and 

Equation (6.22) defines M(r). Moreover, 

J dr<l>*(r)M(r) =0. (6.23) 

<l>t and K ot induce variations in No, :Tl., and P. These are 
given by 

N ot = -QdW/dt, (6.24) 

:Tl.t/:Tl.=!QWNot/No 

-! Re J drdr'Kot(r',r)K*(r,r'), (6.25) 

and 

Pt= - (Not/No)P 

+ (2No)-1 f drdr'1/t*(r)1/t*(r')Kot (r,r')ao2 

From (6.26), the time derivative of eP may be computed 
by 

because 
{[Pt,P],P} =0. (6.28) 

Let Q be the operator that contains only 1/t1* and ao, and 
that satisfies 

iQaO*N / vac) = {:Tl.t/:Tl.+ Pt+![Pt,P]}ao*N 1 vac) 

+Naot*ao*N-1Ivac); (6.29) 
then 

'ltt=iQ'lt. (6.30) 
Explicitly 

Q=QO+Ql, (6.31) 
where 

Qo=NB-i:Tl.t/:Tl.- (2No)-IJ d rdr'1/t 1* (r)1/tl* (r') 

X[iKot(r,r')+ (2B-iNot/No)Ko(r,r') ]ao2, (6.32) 

and 

Ql = -in-if drl/tl*(r) 

X[<I>t(r)+No-1(N-2P)M(r)]ao. (6.33) 

Note that Qo is an even functional of 1/tl*(r), while Q1 
is an odd functional. Finally, it follows from rule A, 
(6.24) and (6.31) that 

f dr'<I>*(r')Kot(r',r) = - f dr'<I>t*(r')Ko(r',r) =M(r). ('ltl Qol 'It)= NoB+! 1m f drdr' Kot(r',r)K*(r,r'), (6.34) 

(6.22) which is real. 
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Q=QO+Ql, (6.31) 
where 

Qo=NB-i:Tl.t/:Tl.- (2No)-IJ d rdr'1/t 1* (r)1/tl* (r') 

X[iKot(r,r')+ (2B-iNot/No)Ko(r,r') ]ao2, (6.32) 

and 

Ql = -in-if drl/tl*(r) 

X[<I>t(r)+No-1(N-2P)M(r)]ao. (6.33) 

Note that Qo is an even functional of 1/tl*(r), while Q1 
is an odd functional. Finally, it follows from rule A, 
(6.24) and (6.31) that 

f dr'<I>*(r')Kot(r',r) = - f dr'<I>t*(r')Ko(r',r) =M(r). ('ltl Qol 'It)= NoB+! 1m f drdr' Kot(r',r)K*(r,r'), (6.34) 

(6.22) which is real. 
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C. Variational Principle 

Consider the Schrodinger equation 

i(ajat)'iJro(t) = H'iJro(t) , (6.35) 

with the initial condition 'iJro(O)='iJro, which is given by 
(B1). Because of the creation of triplets, the matrix 
element ('iJro(t) l'iJro) approaches zero exceedingly rapidly 
as t deviates from zero. Nevertheless, the pair state 
'iJro exp[ -itEo], where Eo is the ground state energy, 
is a useful approximation to 'iJro(t). In the more general 
nonequilibrium case here considered, it is assumed that 
the situation is still so fortunate, i.e., there is for all t 
a useful approximation to the state vector in the form 
of the 'iJr(t) of (6.1). 

Under this assumption, the equations of motion for 
<P and K may be found as follows. Let ot be an infini­
tesimal time increment, <Pt and K t are to be determined 
by maximizing the quantity. 

('iJr(t+M) I e- iH6t I 'iJr(t», 

under the constraint 

('iJr(t+ot) !'iJr(t+M»=('iJr(t) 1'iJr(t»= 1. 

Again omitting the variable t, the expansion 

'iJr (t+ot) = 'iJr+'iJrtOt+t'iJr tt(ot)2 

yields the approximation 

('iJr(t+ot) I e- iH6t I 'iJr(t» 
= l+ot«'iJrtl'iJr)+('iJrI-iHI'iJr» 

(6.36) 

(6.37) 

+t(ot)2«'iJr tt 1'iJr)+ 2('iJr t! - iH I 'iJr)- ('iJr I H21 'iJr». (6.38) 

Equation (6.36) implies that 

('iJrt\ 'iJr)+('iJr I 'iJr t)= O. (6.39) 

Accordingly, the coefficient of ot in (6.38) is imaginary 
and hence must vanish, 

i('iJrtl'iJr)+('iJrIHI'iJr)=O. (6.40) 

The imaginary part of the coefficient of (ot)2 in (6.38) 
is just 

-teaj at) U('iJr t I 'iJr)-i('iJr I 'iJr t)+2('iJr I H I 'iJr», 

which also vanishes by (6.40). With 

('iJr tt I 'iJr)+ 2('iJrt I 'iJr t)+('iJr I 'iJr tt ) = 0, 

(6.38) reduces to 

('iJr(t+Ot) I e- iHOt I 'iJr(t» = 1-Hot)2J, 
where 

J = ('iJr t I 'iJrt)+i('iJr t I H j'iJr)-i('iJr I H l'iJr t ) 

(6.41) 

(6.42) 

+('iJrIH2!'iJr). (6.43) 

The prescription to find the equations of motion is thus 
to minimize J under the constraint (6.40). 

When 'iJr t is expressed by (6.30), J becomes 

J=('iJr1 (Q*+H)(Q+H)!'iJr) (6.44) 

and (6.40) is simply 

('iJr1 (Q+H) I 'iJr)= O. (6.45) 

D. Properties of J 

Since invariance under space-coordinate translation 
has been preserved in the entire discussion, conservation 
of linear momentum follows immediately under appro­
priate boundary conditions. It remains to discuss the 
conservation of energy, and for this purpose it is 
advantageous to obtain certain properties of J first. 
These properties are also useful in the next section. 

Because of rule B, it is more convenient to minimize 
J in the form 

J=('iJr! (Q*+H) (Q+H) 1'iJr) 
-('iJr1 (Q*+H) I 'iJr)('iJr I (Q+H)I'iJr). (6.46) 

By analogy with (6.31), write H in the form 

H=Ho+H1, (6.4i) 

where Ho is an even functional of 'iJr1*(r) and 'iJr 1(r) and 
HI is an odd functional of 'iJr1*(r) and 'iJr 1(r). Clearly 

('iJr I Hll 'iJr)= ('iJr I Ql!'iJr)=O. 

Thus the J of (6.46) may be written as 

J= ('iJr I (Qo*+Ho)(Qo+Ho)j'iJr) 
-('iJr1 (Qo*+Ho)I'iJr)('iJr1 (Qo+Ho)!'iJr) 

+('iJr! (Q1*+H1) (Q1+ H1) 1'iJr). (6.48) 

Since the constraint 

(6.49) 

may be considered merely as the condition for the 
determination of B, the prescription for obtaining the 
equations of motion in the second-order approximation 
is just to minimize J. 

The last term on the right-hand side of (6.48) is to 
be evaluated by rule A. For this purpose, the P in 
the Q1 of (6.33) may be replaced by its expectation 
value 

('iJrIPI'iJr)=tQW. (6.50) 

Thus, by (C17) Q1 reduces to 

Q1 =in-! f dn/lt*(r)F1(r)ao, (6.51) 

where 
F1(r)=<pt(r)+M(r). (6.52) 

Similarly, it is convenient to write 

Qo=NB-i'J'Ltj'J'L 

- (2N o)-li.r drdr'I/1t* (r)I/IJ* (r')F 2(r,r')ao2, (6.53) 
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where 

F 2(r,r') = F 2(r',r) 
=Kot(r',r)- (2iB+"Vot/No)Ko(r',r). (6.54) 

The equations of motion are to be obtained from 

and 
oJ/of\(r) =0 

oJ,ioF 2 (r,r') =0. 

(6.55) 

(6.56) 

In computing the variational derivatives, f\, Fl*' F2, 

and F2* are to be considered to be independent func­
tions. 

By rules A and B, the substitution of (6.51) and 
(6.53) into (6.48) gives 

+t J drdr'dr"drIllFz(r, r')Fz*(r", r'lt) 

x W' (r,r") W' (r',r''') 

-it J drdr'Fz(r,r')Gz(r,r') 

+i! J drdr'F2*(r,r')G2*(r,r')+Jo, (6.57) 

where 

(6.58) 

G2(r,r')=<~! H01/II* (r)l/II* (r') I~) 
-(~ IHol~)(~Ilf'l*(r)lh*(r') I~), (6.59) 

and 
J 0 = (~ I HZI ~) - <~ I H I ~)2. (6.60) 

Equations (6.55) and (6.56) then give, respectively, 

J dr'FI(r')W'(r',r) = -iG1*(r), (6.61) 

and 

f dr" dr'" F 2( r", r''') W' (r", r) W' (r'" ,r') 

= -iGz*(r,r'). (6.62) 

Equations (6.61) and (6.62) give explicitly G1 and 
Gz in terms of FI and F2• In particular, they lead to 

(\{II H oQo I \{I)- (\{II Ho I~)(\{II Qo I \{I) 

= -i J drdr'dr" dr'" Fz(r,r')Fz*(r",rlll
) 

XW'(r,r")W'(r',r''') (6.63) 

and 

(\{II HIQII\{l) = - PIJ drdr'FI (r)FI*(r') W' (r,r'). (6.64) 

This shows explicitly that (\{IIHQI\{I) is real because of 
(6.49); or with (6.30) 

(d/dt)(\{I1 H I \{I) = - Im(\{I1 HQ I \{I) = O. (6.65) 

This is the conservation of energy. 
In order to study further (6.61) and (6.62), it is con­

venient to introduce the projection operator CP to the 
space orthogonal to <f>, i.e., 

(J>j(r) = f dr'j(r') [0 (r'- r)-n-1<fJ*(r')<f>(r)]. (6.66) 

It is easy to verify that 

f dr'W'(r",r')[o(r'- r)- lVI(r',r)]=CPo(r" - r). (6.67) 

Application of (6.67) to (6.61) and (6.62) yields 

CPf\(r) = -if dr'G1* (r') [0 (r' - r)- W1(r',r)], (6.68) 

and 

CPCP' F z(r,r') = -if dr" dr'''Gz* (r", r"') 

X[o(r"-r)- WI(r",r)] 

X[o(rll! - r')- WI (r"',r')]. (6.69) 

The formalism will not be carried any further; instead, 
attention is directed to the special case of the Hamil­
tonian as given by (1.7). 

7. EQUATIONS OF MOTION IN SECOND-ORDER 
APPROXIMATION 

The various terms of the Hamiltonian are classified 
in order of magnitude according to the number of times 
If'l* and If'l appear. In the first-order approximation, only 
terms with none or with one of the operators If'l* or If'l 
are kept. For the second-order approximation, it is 
necessary first to determine which terms to keep. For 
the case of the ground state, an appropriate parameter 
of expansion is (poa3)!, at least for the first few orders 
of approximation. On the other hand, for the ground 
state, the depletion factor, which contains one If'1* and 
one If'l, is of the order of magnitude (poa3)t. It is there­
fore natural to consider two of the operators If'l* or If'l 
to correspond to one extra lower order of magnitude. 
Therefore, for the second-order approximation, it is 
necessary to keep terms that include up to three of the 
operators If'l* or If'l. 

To save some writing, let c.c. denote the Hermitian 
conjugate of the previous term. From (2.2), V in this 
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approximation takes the form 

V"-'47ran-1sao*2a02 

+87ra!J-~ao*a02 j dnf;l* (r)if> (r) / if>(r) /2+ C•C• 

+ 167rafJ-1ao*aoj dC1/1t*(r)if;I(r) /<fl(r) /2 

~.l7ran-la02 j drif;l* (r)2if> (r)2+c.c. 

+87rafJ-!aoj drif;I*(r)2if;I(r)<fl(r)+c.c. (7.1) 

In view of a previous calculation,1O no term corre­
sponding to a three-body pseudopotential is included 
in (7.1) for the present case of hard spheres. If the 
basic two-body interaction is of a different form, such 
a three-body pseudopotential may be necessary. With 
the Hamiltonian split in the form (6.47), the second­
order approximations to Ho and HI are, respectively, 

H 0= N o (t+47raplS) -7)(t+87raplS) 

+ j dnf;l*(r)[ - V'2+ 167rapl/ <fl(r) /2]if;I(r) 

+47rafJ-1ao*2j drif;l(r)2if>*(r)2+ c.c., (7.2) 

and 

HI = f dnf;l*(r)[ - V'2+87rapt/ <fl(r) /2_ 87rafJ-I7)/ if>(r) /2 

where 
+ 87raif;1* (r)if;l (r)]if>(r)aofJ-~+c.c., (7.3) 

The entire formalism of the last section may now be 
applied. In particular, (6.68) is explicitly 

<PF1(r)= -i<PG(r)-i j dr'Ko(r',r)G*(r'), (7.S) 

where 

e (r) = [ - V'2+87rapII if>(r) 1
2+ 167raW (r,r)]if> (r) 

+87roK(r,r)<fl*(r); (7.6) 
while (6.69) is 

<p<p' F 2(r,r') 

= -i<P<P' {[ - V'L V"2+167rapt/if>(r)/2 

+ 167rapdif>(r') 12_ 2t-167rapIs]Ko(r,r') 

+ 87rap1if> (r)21l (r'- r) 

+ 87raP1 j drIlKo(r,rll)Ko(r',rll)if>*(rll)2}. (7.7) 

---
10 T. T. Wu, Phys. Rev. 115, 1390 (1959). 

By (6.22) and the results of Appendix E, (7.5) is 
equivalent to 

(7.8) 

The other projections of if>t and K ot may be easily 
found from (6.S), (6.20), and (6.22): 

(1- <P)Kot(r,r') = fJ-lif> (r)M (r') ; (7.9) 

(1-<PI)K Ot(r,r') = fJ-1M (r)if>(r') ; (7.10) 

(1- <P) (1- <P1)Kot(r,r') = 0; (7.11) 

and 

(1- <P)if>t(r) = iBif>(r). (7.12) 

Equations (7.7)-(7.12) finally give the desired equations 
of motion in the second-order approximation: 

iKot(r,r') = - (2B-i;Vot/No)Ko(r,r') 

and 

+[ - V'L V"2+ 167rapl/ if>(r) /2 

+ 167rapl/if>(r') / L 2t-167rapl]Ko(r,r' ) 

+87rap1if>(r)21l(r- r') 

+87raP1 j dr" Ko(r,rl)Ko(r',r")if>*(r")2 

-if>(r)A(r')-if>(r')A(r), (7.13) 

i<flt(r) = - B'if>(r)+[ - V'2+87rapl/ if>(r) /2 

+ 167raW(r,r) ]if>(r) + 87raK (r,r)if>*(r), (7.14) 

where 

+ j drIKo(r,rl)if>*(r') /if>(r' ) /2, (7.15) 

and 

B' = B+t+87rapIS+ 167rafJ-1 j drW (r,r) / if>(r) /2 

It only remains to obtain an explicit formula for B from 
(6.49), using (6.34), (7.2), and rule A: 

B= -t-47rapIS- (2:VO)-1 1m j drdr'Kot(r,r')K*(r',r) 

-NO- 187rapl Ref drK(r,r)if>*(r)2 

-No-I! dr{[ - V'2+167rapII<fl(r) /2]W(r',r)}r'=r, 

(7.17) 
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HI = f dnf;l*(r)[ - V'2+87rapt/ <fl(r) /2_ 87rafJ-I7)/ if>(r) /2 
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+ 87raif;1* (r)if;l (r)]if>(r)aofJ-~+c.c., (7.3) 
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2+ 167raW (r,r)]if> (r) 
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+ 87raP1 j drIlKo(r,rll)Ko(r',rll)if>*(rll)2}. (7.7) 

---
10 T. T. Wu, Phys. Rev. 115, 1390 (1959). 

By (6.22) and the results of Appendix E, (7.5) is 
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(7.8) 
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(1- <P)if>t(r) = iBif>(r). (7.12) 

Equations (7.7)-(7.12) finally give the desired equations 
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+87raP1 j dr" Ko(r,rl)Ko(r',r")if>*(r")2 

-if>(r)A(r')-if>(r')A(r), (7.13) 

i<flt(r) = - B'if>(r)+[ - V'2+87rapl/ if>(r) /2 

+ 167raW(r,r) ]if>(r) + 87raK (r,r)if>*(r), (7.14) 
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B= -t-47rapIS- (2:VO)-1 1m j drdr'Kot(r,r')K*(r',r) 

-NO- 187rapl Ref drK(r,r)if>*(r)2 

-No-I! dr{[ - V'2+167rapII<fl(r) /2]W(r',r)}r'=r, 

(7.17) 
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so that 

B'=41T'aplt- (2No)-1 1m f drdr'Ko1(r,r')K*(r',r) 

+No- 181T'ap1i 1m f drK(r,r)<I>*(r)2 

8. SOME SIMPLE PROPERTIES OF THE EQUATIONS 
OF MOTION IN SECOND-ORDER APPROXIMATION 

Since the equations of motion (7.13) and (7.14) are 
rather complicated, only a few simple statements can 
be made about them. Equation (7.14), being an im­
provement over (2.21), may be expected to be accurate 
to the order (poaS)1 compared with the leading term. On 
the other hand, certainly only the leading terms in 
(7.13) are meaningful. Therefore, in general, the equa­
tions of motion may be treated in the following manner: 

(i) Obtain a first-order approximation to <I> by solving 
(2.21). 

(ii) Use this first-order approximation m (7.13) 
together with the simplifications 

and 

and solve the resulting simplified equation. 

(8.1) 

(8.2) 

(iii) Use this solution in (7.14) to obtain a second­
order approximation to <1>. 

The replacement (8.1) is accurate only when 

l{-No«N, (8.3) 

and this replacement is not mandatory. However, 
except for some rather simple cases, it seems difficult 
to discuss the validity of (7.13) and (7.14) without 
(8.3). 

It is an interesting exercise to work out the case of 
the ground state with this procedure. If E is the ground 
state energy per particle and periodic boundary condi­
tions are used, then <I> and Ko may be written in the form 

<I>(r)= e- iE1 

and 
Ko(r',r) = e-2iEtXo(r',r). (8.4) 

In carrying out step (ii), it is found that the partial 
differential equation may be solved by a separation of 
variables. When L2/1T'2 is an integer, the corresponding 
homogeneous equation may possess nontrivial solu­
tions; however, since an infinitesimal change in L can 
make these solutions disappear, they may be con­
sidered to be meaningless. When they are omitted, the 
solution is found to agree with that of Appendix B. 
It is seen from (B13) that K(r,r) does not exist. Since 
this divergence is precisely the type encountered by 

Lee, Huang, and Yang,S their procedure of assigning a 
meaning to K(r,r) may be used before carrying out 
step (iii). More complicated types of divergence are 
never encountered in this approximation. It should be 
noted that the formation as given in Sec. 6 depends 
critically on the fact that H is Hermitian, and con­
sequently the artifice10 introduced to deal with the 
ground state energy is not convenient here. 

Consider next the case of a rigid boundary. Here the 
partial differential equation encountered in step (ii) 
cannot be solved explicitly. However, some qualitative 
notion about the solution may be obtained simply by 
using (8.4) instead. Since the boundary condition on 
Ko(r,r') is 

Ko(r,r')=O (8.S) 

when either r or r' is on the boundary S, the solution in 
this case is 

Ko(x,y,z; x',y',z') 
= e-2iE1[Xo(x,y,z; x',y',z') - Xo(x,y,z; -x',y',z') 

-Xo(x,y,z; x', -y',z')-Xo(x,y,z; x',y', -z') 
+Xo(x,y,z; x', -y', -z')+Xo(x,y,z; -x',y', -z') 
+Xo(x,y,z; -x', -y',z') 

-Xo(x,y,z; -x', -y', -z')]. (8.6) 

Since the range of Xo is of the order of magnitude of the 
correlation length as defined by (3.21), it is seen that 
the rigid boundary only has an effect of several corre­
lation lengths, as is the case in the first-order approxi­
mation. 

The local number density and momentum may be 
defined by 

per) = (\)f 1 1/;* (r)1/;(r) 1 \)fl, (8.7) 
and 

p(r)= (\)f1 1/;* (r)(l/i)W(r) l\)fl, (8.8) 

respectively, while the local velocity is 

v(r) = 2p(r)/ per). (8.9) 

Note that in (8.8) the gradient operator should operate 
symmetrically to the right and to the left. Application 
of rule A to (8.7) and (8.8) gives 

per) = pd <I>(r) 1
2+ W (r,r), (8.10) 

and 
1 

per) =-(Pl[<I>*(r)V<I>(r)-<I>(r)V<I>*(r) ] 
2i 

+[(V-V')W(r',r)Jr'=r}' (8.11) 

The equation of continuity follows from (7.14) and 
(7.13) with (8.2). Without any further approximation, 
it may be verified that 

iW1(r',r)= [ - V2+V'2+161T'apll <I>(r) 12 
-161T'apll <I> (r') 12JW (r',r) 
+ 81T'ap 1K* (r', r)<I> (r)2 

-81T'ap1K(r', ) 
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and hence 
pt(r)+ 2V· pet) = o. (8.13) 

On the other hand, pt(r) involves a term of the form 

V'. [(V - V') (V - V')W (r',r)Jr'=r, (8.14) 

which is not expressible in terms of per) and v(r). Thus, 
it is not possible in the second-order approximation to 
write down an equation of motion of the type of Euler's 
equation or Navier-Stokes equation. 

The vorticity VX v(r) involves combinations of the 
form 

[(V X V' - V'X V)W (r',r)Jr=r, (8.15) 

which does not vanish in general. Therefore, in the 
second-order approximation, the flow is in general not 
strictly irrotational. 

Finally, the equations of motion are invariant under 
a Galilean transformation. The rules of the trans­
formation under 

are 

and 

v(r) -+ v(r)+vo 

<I>(r) -+<I>(r) exp(i!vo·r) 

(8.16) 

( 8.17) 

W(r',r) -+ W(r',r) exp[i!vo' (r-r')]. (8.18) 

9. DISCUSSION 

The entire paper is based on specific assumptions 
about the form of the Schrodinger wave function. These 
assumptions come from generalizing the one known 
form of the wave function in the case of the ground 
state. Accordingly, there is no rigorous proof that the 
assumptions (2.17) and (6.1) are even approximately 
valid. The best hope is to justify them a posteriori by 
studying the consequences of these assumptions. This 
is done to a certain extent in Sees. 4 and S. The few 
consequences of the equation of motion in the first­
order approximations are not in contradiction with the 
existing knowledge of nonequilibrium phenomena for a 
Bose system of hard spheres. 

The present theory may also be considered from the 
point of view that a many-body problem may be de­
scribed by an infinite system of coupled differential 
equations of motion for the Green's functions of one 
particle, two particles, etc. In order to carry out any 
concrete calculation, this infinite system of equations 
must be approximated by terminating it in some 
fashion. This is usually done by approximating the 
many-particle Green's functions by combinations of 
those Green's functions involving fewer particles. The 
assumption on the form of the Schrodinger wave func­
tion merely gives a definitive prescription of how this 
procedure is to be carried out. Since no systematic way 
to approximate an infinite system of differential 
equations by a finite one is known, any method of ter­
minating the infinite system is at best heuristic. How­
ever, the present procedure does have the advantage of 
reproducing correctly the lowest stationary state of the 

Bose system. From this point of view, even m the 
second-order approximation, only the one-particle 
Green's function is retained in the finite approximate 
system of differential equations of motion. 

Since the equations of motion (7.13) and (7.14) in 
the second-order approximation are rather complicated, 
very little can be done with them. In the following, the 
compressional wave is to be discussed briefly, taking 
(7.13) and (7.14) seriously. For this purpose, these 
equations of motion are linearized by using 

<I> (r,t) = e- iEt[l +E~(r,t)], (9.1) 

Ko(r,r'; t)=e-2iEt[Xo(r,r')+eKo(r',r; t)], (9.2) 

and retaining only first-order terms. For a given wave 
number k for the compressional wave, the step (i) of 
Sec. 8 gives the following approximation to <I>(r,/) : 

~(r,t) = e-i(wt-k ·r) -ake;(wt-k .r), (9.3) 

where wand k are related by (5.17). When this is used 
in (7.13), it is seen that Ko must have the following 
invariance property 

Ko(r+ro, r' +ro; t) =Ko(r,r'; t) exp(ik· ro). (9.4) 

This in particular means that eVo is not changed by the 
perturbation, i.e., the occupation of the <P state is not 
changed by the presence of a compressional wave. This 
is to be contrasted with the statement that the excita­
tion of a phonon changes the ground-state depletion 
factorY This difference leads to the result that in the 
second-order approximation the energy spectrum of a 
compressional wave is not identical with the phonon 
spectrum .. More precisely, the present calculation indi­
cates that there is a difference between a phonon and 
a compressional wave in the sense of a periodic variation 
of <I> when 

correlation length « wavelength of the 
compressional wave 

« thermal wavelength. (9.5) 
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APPENDIX A 

The derivation of (2.20) from (2.19) is simple if the 
increment in time is taken to be small compared with 
(apoN)-l; however, since the limiting case of infinite 
volume, and hence infinite N, is not to be excluded, it is 

11 See Sec. 8 F of footnote reference 10. 
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of some interest to see that this assumption ahout time 
increment may be replaced by 

ot«(apo)-l. (Al) 

With this ot, let [exp( -iH(l)ot)J'l'(t) be computed. For 
this purpose, calculate first [exp( -iH(1)at), do*(t)]. In 
general, if 

[j,g]l = [j,g] (A2) 
and 

[j,g] " = [j,[j,g] "-1] (A3) 
for n> 1, then 

'" [el,g]= L (n!)-l[j,gJ"ef. (A4) 
n=l 

It is straightforward to obtain from (2.13) and (2.14) 
that 

and 

where 

[J2= rt-1f drl (- V'2+81l'apol<I>(r,t) 12)<I>(r,t) 12 

-[f(t)+81l'apo!"(t)]2. (A7) 

Thus, it follows from (A4) that 

[exp( -iH(l)ot), ao*(t)] 
= {ao*(t)(cosUOt-l)-iU-l[H(I),ao*(t)] sinUOi} 

Xexp(-iH(l)ot). (A8) 

Since U is of the general order of magnitude apo, it 
follows from (Al) that 

UOt«1. (A9) 

Consequently, (A8) simplifies to 

[exp( -iH(1)ot), ao*(t)J 

= -iat[H(1), ao*(t)J exp( -iH(l)at). (AlO) 

It now follows from (AlO) and (2.18) that 

exp( -iH(l)at)'l'(t) 

= (N!)-~{ao*(t)-iot[H(l),ao*(t)] 
-iOt[f(t)+41l'apotCt)]} N I vac). (All) 

When this is identified with 'l'(/+ot), (2.20) results. 

APPENDIX B 

The case of the ground state of the Bose system may 
be put in the language of Sec. 6. In the notation of Lee, 
Huang, and Yang,3 the ground state is given by 

where 

'l'o=:n exp[ -i L akak*a_k*] I ), (Bl) 
k*O 

ak= (2Yk)-1[1- (1-4Yk2)~], 

Yk= 41l'apo(k2+81l'apo)-1, 

a k*=12-i! drlj!*(r)eik •r, 

(B2) 

(B3) 

(B4) 

and I ) is defined by akl )=0 for all k=l=O. The state 
I ) is to be identified as 

I )= (N!)-iao*Nlvac). (BS) 

Because 'l'o is time independent, it should be compared 
with (6.1) with P in the form [see (8.4)J 

P= (2No)-lf drdr'y,,1*(r)lft*(r')Xo(r,r')ao2• (B6) 

The result is 

Xo(r',r)= _12-1 L akeik.(r'-r). (B7) 
k*O 

It then follows from analogs of (6.8) and (6.9) that 

'\9,'i,,(r',r)=12-1 L ak2"eik .(r'-rl (BS) 
k*O 

and 
X n (r',r)=-12-1 L ak2n+leik.(r'-rl, (B9) 

k*O 

both for n> 1. From (6.10) and (6.13), it follows that 
in this case 

W(r/,r)=rt-l L a.?(l-a,,?)-leik.(r'-r), (BlO) 
k4'O 

and 
X(r/,r) = _12-1 L ak(1-ak2)-leilt .(r'-r). (Ell) 

k*O 

As 12 ~ 00, these approach, respectively, the limits 

W(r',r) -7 (27I')-3j dkak2(1-ak2)-leik-{r'-r), (B12) 

and 

X(r',r) ~ - (21l')-3f dkak(1-ak2)-leik .(r'-r), (B13) 

It is important to note that 

00 

L n'W',,(r',r)=n-1 L ak2(1-ak2)-2eik.(r'-rl, (B14) 
,,-1 k*O 

and 

'" L nX,.(r',r)=-12-1 L ak3(1-ak2)-2eilt.(r'-r) (BlS) 
,,~o k9) 

both approach finite limiting values as 12 -7 00, while 
the limits as n -7 00 of 

'" L n2W,,(r',r)=Q-1 L ak2(l+ak2)(1-ak2)-3eik.(r·-r) 
n~l k*O 

and 
(B16) 

00 

L n2X .. (r',r)= _12-1 L ak3(1+a/c2)(1-ak2)-3eik.(r'-r) 

11.=1 k*O 

do not exist. 
(Bl7) 
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of some interest to see that this assumption ahout time 
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APPENDIX B 
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APPENDIX C 

In this Appendix, the formula for;n [Eq. (6.16)J will 
be derived, and the rule A of Sec. 6 discussed. It follows 
directly from (6.2) and (6.6) that 

'" N! 
;n-2= L (2No)2M 

M=il (N-2M) !MIMI 

X (vac\ [f drdrVt(r)if;t(r')Ko*(r"r)]M 

x[f drdr'if;t* (r)if;t* (r')Ko(r',r) f'\vac). (Cl) 

When an attempt is made to calculate this vacuum 
expectation value by graphical methods, it is found that 
the relevant graphs are unions of closed loops. Let m", 
be the number of loops consisting of 2n links, where 
each link stands for either Ko or Ko*. Because of the 
conventions (6.4) and (6.5), (Cl) can be evaluated by 
this method as 

'" N! 
;n-2= L (2lYo)-2M 

M=O (N-2M)!M!M! 

XM=tnmn [IIn:l!)mn r IIn(mn 1)-1 

X II,,[22n- ln !(n-l) !nll'nJmn, (C2) 

where Wn is defined by (6.8), and the factor 22n-1n l(n-1) I 
comes from the number of different ways of connecting 
2n points into a loop. Equation (C2) is readily simplified 
to 

(C3) 

This is to be evaluated for large N. 
Define the following two functions of the complex 

variable z: 

h(z) = L z2:!;nmn IIn(mnO-1(nWn)mn, (C4) 
{mn) 2n 

and 

(CS) 

then 
;n-2=coefficient of ZO inh(z)h(z). (C6) 

Both hand h can be easily evaluated as 

h(z)=exp 02:_"_ , { 
W Z2n} 

n 2n 
(C7) 

and 
h(z)= CYoZ)-NN! exp(NoZ). (C8) 

Thus z=O is a pole of order N for h(z)h(z). By (C6), 
it follows from Cauchy's formula that 

(C9) 

where the contour of integration is some circle within 
which h is analytic. This integral is to be evaluated by 
the method of steepest descent. 

Let WI be the operator with matrix elements 

(r'!Wtlr)=Wt(r',r), (ClO) 
then 

(r'IWtnlr)=W,,(r',r). (Cll) 

Furthermore, it follows from (6.7) that WI is a non­
negative Hermitian operator. Therefore 

(Cl2) 

Let Ao be the largest eigenvalue of W t with degeneracy 
no, then for very large n, W n is given approximately by 

(Cl3) 

It may be concluded from (Cl2) and (C13) that the 
function Ln(2n)-lW nZ2n is analytic in the circle 
I z I <Ao-\ it is increasing and convex along the positive 
real axis, and it is unbounded as z ~ Ao- I . Therefore, 
with (C8), the function In[h(z)h(z)J is strictly convex 
for O<Z<Ao-l , and is unbounded near either end. In 
this range, the equation 

(d/ dz)[jt (z)h(z) J= 0 (Cl4) 

has one and only one solution; call it zo. Furthermore, 
this is the relevant point of steepest descent since 
along any circle of constant Izl, Ih(z)h(z) I attains 
its maximum value on the positive real axis. The 
contour of integration in (C9) is thus chosen to be 
Izl =Zo. 

Equation (C14) is more explicitly 

n Ln W nZo2n-J-N/zo+No=0. (CIS) 

It is convenient to choose No so that 

Zo= 1. 
The choice is clearly 

No=N-OW, 
where 

(C16) 

(C17) 

(Cl8) 

It will be shown by (C22) that this simple choice 
implies (6.3). With this choice, (6.16) follows easily 
from the usual method of steepest descent and Stirling's 
formula. 
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If 
m=O(l), 

then 

00 N! 
=~2 L No-2M-m 

M==() (S-2M-m)! 

=~2_1_ f K (Z2; r',r)z-Ih(z)h(z)dz, 
27ri 

where 

00 

K(Z2; r',r) = L z2n+2K n (r',r). 
n=O 

(C19) 

(C20) 

(C24) 

Since the point of steepest descent is at Z= 1, and from 
(6.13) 

K(r',r)=K(l; r',r), (C2S) 

rule A is verified in this special case. In general, rule A 
can be verified in this manner, although it seems difficult 
to write down a concise general proof. 

It remains to discuss the error involved in using rule 
A. Consider again the special case (C23). If 

a2 

lim -K(z; r',r)jZ=1 
N-+oo az2 

exists, then, by the method of steepest descent, the 
relative error involved in keeping only the leading term 
is of the order of .V-l. This limit is explicitly 

QC 

lim L n(n+ l)Kn(r',r). 
N--+oo n=O 

By (B17), even in the case of equilibrium, this limit 
contains a logarithmic divergence. Therefore, the 
relative error incurred in using rule A in this case is of 
the order of X-lInN. This statement is true in general 

By the method used for ~-2, this is equal to 

as N ----> IX). In particular, this shows that 

No=(if I ao*ao I if)+O(l). (C22) 

The following expectation value may be evaluated 
by the same procedure: 

(C23) 

provided that the number of operators in S, 2n+a+,6, 
is of the order of 1 as N ----> IX). 

APPENDIX D 

Rule B of Sec. 6A is not a completely trivial con­
sequence of rule A for the following reason. In con­
nection with the equation of motion, rule B is used, for 
example, in evaluating the following type of integral: 

X [(if I S1S21 if)-(if I S 11 if)(if I S21 if)], (D 1) 

where Rand R' are two weight functions which differ 
appreciably from zero only when all the arguments are 
close to one another. In this case, the terms obtained 
by rule B give a contribution to I(SI,S2) of the order 
of N. On the other hand, according to the result of 
Appendix C, the error term of rule A can contribute 
something of the order of ~y InX. It is necessary to 
show that this does not occur. 

For this purpose, it is sufficient to restrict the atten­
tion to those groupings in the S3 of B (i) that do not 
mix the r and the r' coordinates. These are precisely 
the groupings excluded in B(iii). Let 10(SI,S2) be the 
contribution of th~se groups to I(SI,S2). According to 
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Appendix C, I o(SI,S2) is of the form 

I o(SI,S2)=L: J drdr'R (r)R' (r') 

-;n4L:i f 8 1(z2,r)z-I!t(z)!z(z)dz ] 

xL:i f 8 2(Z2,r')Z-1!t(Z)!z(Z)dZ]}, (D2) 

where r stands symbolically for rl, ... r2n, and r' for 
rt', ... r2n/, and the sum is over the types of groupings 
just mentioned. In (D2), the functions 8 1 and 8 2 are 
essentially products of the function K of (C24) and a 
similar one W derived from W n. To get the leading 
term of I o(SI,S2), it is sufficient to keep the first and 
second derivatives of 8 1, and 8 2. Write 

8 1 (z2,r) = 8 1 (l,r) + (ZL 1)81' (l,r) 

and 

8 2(z2,r') =82(1,r')+ (ZL 1)82' (1,r') 
+Hz2-1)282"(1,r'), (D4) 

then the leading term of I o(SI,S2) is 

I o(SI,S2)=L: f drdr'R(r)R'(r') {;n2
2
:
i 
f [(z2-1)(8182'+8I'82)+HzL 1)2 (8182"+28I'82'+8/'82)J 

X Z- I!t(Z)!z(Z)dZ-;n2L:i f [(ZL 1)81'+HzL 1)28I/1Jz-1!t (Z)]2 (z)dz ]82 

-;n28Ir 2:i f [(Z2-1)82'+HZZ-l)282"JZ-l!t(Z)!z(Z)dZ]} 

= L: fdrdr'R(r)R'(r')8I'(1,r)82'(l,r');n2~ f(ZZ-1)2Z-1!t(Z)!z(Z)dZ. 
27r~ 

(DS) 

Note that 81" and 8 2" do not appear. Roughly (C7) 
and (C8) gives 

When Rand R' are themselves products of K(r',r) 
and W(r',r), the order of magnitufe of I o(SI,S2) may 
be estimated using the formulas for the ground state. 
With the results of Appendix B, the estimate is 

(D7) 

Similarly, the contribution to I(SI,S2) from those 
terms retained in rule B is of the order of magnitude 
plaig. Thus, I o(SI,S2) is smaller by a factor (pa3)i. 

This justifies rule B. It should be emphasized that 
in connection with (D1) the relative error incurred in 
using rule B is (pa3)!, as contrasted with N-IlnN of 
rule A. 

APPENDIX E 

Consider the number-distribution function 

which is easily evaluated by rule A of Sec. 6A: 

N(r',r) = g-INo<I> * (r')<I>(r)+ W(r',r). (E3) 

By (C17), (E3) is consistent with the requirement 

f drN(r,r) =N. (E4) 

For an arbitrary one-particle state <I>1(r) satisfying 

(ES) 

the corresponding creation and annihilation operators 
may be defined similar to (2.4): 

and 

(E6) 

N (r',r) = ('l11 if; * (r')if;(r) I 'l1). (E1) The occupation of such a state is 

Because of (2.6) and (6.1) this can be written as n(<I>I) = ('l11 al*all 'l1) 

N (r',r) = g-l<I>*(r')<I>(r)('l11 ao*ao I 'l1) = g-lfdrdr'<I>l(r')N(r',r)<I>l*(r). (E7) 
+('l1Iif;l*(r')if;l(r) 1'l1), (E2) 
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From (ES) and (E7), n(<I>I) is stationary if and only if 

f dr'<I> 1 (r')N (r',r) = n (<I> 1)<1> 1 (r). (E8) 

Therefore, it follows from (E3) that a possible solution 
of (ES) is given by 

<1>1 (r) = <I> (r) 
with 

n(<I»=No• 

(E9) 

(ElO) 

Furthermore, since JY(r',r) is a Hermitian kernel, the 
various solutions of (E8) are orthogonal. Thus any 
other solution of (ES) satisfies 

f dr'<I>I(r') W(r',r) = n (<I> 1)<1>1 (r). (Ell) 

Because of (6.12), (Ell) may be written as 

A consequence of the choice (C17) is that the power 
series 

n=l 

of the operator WI defined by (ClO) are less than one. 
This is consistent with (E12), where n(<I>I) ~ O. 

In particular, for any finite n1 the equation 

f dr'<I>I(r')W1(r',r)=<I>I(r) (E13) 

implies 

<l>1(r) =0. (EI4) 
Since any solution of 

f dr'<I>I(r')Ko*(r',r) = ±<I>I*(r), (EIS) 

also satisfies (EI3), (EIS) implies (E14). By Fredholm 
theory, if n is finite and /f(r)/2 is integrable, then the 
integral equation for <1>1 (r) 

f dr' <l>1(r')W1(r',r) = <l>1(r) +f(r) (EI6) 

has one and only one solution. The same is true of the 
integral equation 

f dr'<I>I(r')Ko*(r',r)=±<I>I*(r)+ fer). (EI7) 

This is proved by solving the first iterated integral 
is convergent at z= 1. Thus 1 <Ao-\ or all eigenvalues equation, and then using (ElS). 
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A method for treating nonlinear stochastic systems is described 
which it is hoped will be useful in both the quantum-mechanical 
many-body problem and the theory of turbulence. In this method 
the true problem is replaced by models that lead to closed equa­
tions for correlation functions and averaged Green's functions. 
The model solutions are exact descriptions of possible dynamical 
systems, and, as a result, they display certain consistency proper­
ties. For example, spectral components of Green's functions which 
must be positive-definite in the true problem automatically are 
so for the models. The models involve a new stochastic element: 
Random couplings are introduced among an infinite collection of 
similar systems, the true problem corresponding to the limit where 
these couplings vanish. The method is first applied to a linear 
oscillator with random frequency parameter. The mean impulse-

1. INTRODUCTION 

T HIS paper is intended to introduce a method for 
treating certain problems where the dynamical 

equations are nonlinear in stochastic quantities. The 
quantum-mechanical many-body problem1•2 and the 
theory of turbulence3,4 are two fields of currep.t interest 
where it is hoped that the method will proye useful. 
In such problems, there arise from the dynamical 
equations an infinite hierarchy of coupled equations 
which relate given ensemble averages to successively 
more complicated ones. An equivalent statement is that 
the prediction of a given average over a finite time 
requires the initial knowledge of an infinite number of 
averages. This situation, which commonly is called the 
closure problem, arises even when the nonlinear sto­
chastic terms an, linear in the dynamic variables. An 
example is linear wave propagation in a medium with 
random refractive index fluctuations. 6 Here the equa­
tion for the ensemble-averaged wave amplitude forms 
the base of an hierarchy involving successively higher 
cross-moments of the joint distribution of index and 
amplitude fluctuations. 

A formal solution to the dynamical equations of any 
of the problems mentioned above may be obtained by 
treating the nonlinear terms as a perturbation and 
expanding by iteration.3•6 One may then approximate 
statistical quantities by either truncating this expansion 

* Supported by the Air Force Office of Scientific Research. 
1 E. Montroll and J. Ward, Phys. Fluids 1, 55 (1958). 
2 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 

This paper contains an extensive bibliography. 
a G. K. Batchelor, The Theory of Homogeneotts Turbulence 

(Cambridge University Press, New York, 1953). 
4 C. C. Lin. Turbulent Flows and Heat Transfer (Princeton 

University Press, Princeton, New Jersey, 1959), Part C, Chap. 1. 
• J. B. Keller, in Hydrodynamic Instability, Vol. 13, Proceedings 

of Symposia in Applied Mathematics, edited by G. Birkhoff 
(American Mathematical Society, Providence, Rhode Island, to 
be published). 

6 See, e.g., L. Van Hove, Physica 22, 343 (1956). 

response function of the oscillator is obtained explicitly for two 
successive models. The results suggest the existence of a sequence 
of model solutions which converges rapidly to the exact solution 
of the true problem. Applications then are made to the Schrodinger 
equation of a particle in a random potential and to Burgers' analog 
for turbulence dynamics. For both problems, closed model equa­
tions are obtained which determine the average Green's function', 
the amplitude of the mean field, and the covariance of the fluctu­
ating field. The model solutions can be expressed as sums of 
infinite classes of terms from the formal perturbation expansions 
of the solutions to the true problems. It is suggested that corre­
spondence to stochastic models may be a useful criterion to help 
judge the validity of partial summations of perturbation series. 

or summing tractable classes of terms to all orders. 
Another (and related) approach is to discard the 
cumulants of the statistical distribution above a certain 
order. Then all averages are expressible in terms of 
averages of this order and below, thereby providing a 
closure of the hierarchy of coupled statistical equa­
tions.2 ,7 

In the method to be presented here, the true problem 
is replaced by models that lead, without approximation, 
to closed equations for correlation functions and aver­
aged Green's functions. The model solutions are exact 
descriptions of possible dynamical systems, and, con­
sequently, they have certain consistency properties 
which can be lacking in the approximation schemes 
mentioned. For example, spectral components of 
Green's functions which must be positive-definite in 
the true problem automatically are so in the models. 
A related property is that covariances satisfy certain 
realizability inequalities. 

The models are constructed by introducing dynamical 
couplings among an infinite collection of similar systems, 
the true problem corresponding to the limit in which 
these couplings vanish. The coupling coefficients change 
randomly from one individual system in the collection 
to another. Thus they constitute a new stochastic 
element not present in the true problem. The models 
are most easily formulated in terms of a collective repre­
sentation in which the variables are linear combinations 
of those of all the individual systems. 

The closed statistical equations which characterize 
the models are obtained by averaging over an ensemble 
of realizations of the collection of coupled systems. 
When iteration expansions are generated for the aver­
ages of basic interest, it is found, using the collective 
representation, that the random couplings result in the 
cancellation of large classes of terms of all orders. The 

71. Proudman and W. H. Reid, Phil. Trans. Roy. Soc. London, 
Ser. A, 247, 163 (1954). 
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remaining terms are identical with corresponding ones 
in the expansion for the true problem (zero couplings). 
Although still of all orders, they have a sufficiently 
simple structure so that their sum represents the exact 
solution of closed integral equations. 

The method of stochastic models is introduced in the 
present paper by application to a linear oscillator whose 
frequency parameter is Gaussianly distributed over an 
ensemble. This system has the virtue that it can be 
solved exactly. Furthermore, it displays great sensi­
tivity to inadequacies in approximation schemes. 
Neither truncation of the perturbation series nor the 
cumulant-discard approach yields admissible approxi­
mations (Sec. 2). The collective representation and the 
general model are formulated in Secs. 3 and 4. Explicit 
solutions for the average impulse-response function of 
the oscillator then are obtained for two particular 
models (Secs. 5 and 7). They suggest the existence of 
a sequence of model solutions which converges rapidly 
to the exact solution for the true problem. In Sec. 8, 
model equations are obtained for the mean and covari­
ance of the amplitude of the oscillator when driven by 
random forces. The generalization to non-Gaussian 
frequency distributions is described in Sec. 9. 

In Sec. 6, approximations for the average response 
function are examined which represent infinite classes 
of terms in the perturbation expansion for the true 
problem, but which do not correspond to possible 
stochastic models. Although they are very plausible in 
terms of a diagrammatic representation of the per­
turbation series, these approximations have pathological 
characteristics. This suggests that correspondence to 
stochastic models may be a useful criterion to help 
judge the validity of partial summations of perturbation 
series in other analogous situations. 

In Secs. 10 and 11, stochastic models are formulated 
for two problems of more physical interest: the 
Schrodinger equation of a particle in a random potential 
and Burgers' analog to turbulence dynamics. For both 
problems, closed integral equations are obtained which 
determine the average Green's function, the amplitude 
of the mean field, and the covariance of the fluctuating 
field. The models for these systems have an intimate 
formal relation to those for the random oscillator. In 
fact, the random potential problem is homologous to the 
oscillator problem, in the sense that the coupling coef­
ficients characterizing corresponding models are iden­
tical in the two cases. Many results for the random 
potential problem can be obtained by inspection from 
the oscillator results. A comparison of the model equa­
tions for the random potential and turbulence problems 
illustrates the similarities and differences involved when 
the present method is applied to systems which are, 
respectively, linear and nonlinear in the dynamic 
variables. 

In a paper to follow, stochastic models are formulated 
for classical and quantized nonlinear oscillators. Then 
the many-boson problem with interparticle forces is 

treated. This problem is homologous to the quantized 
nonlinear oscillator in the same way as the random 
potential problem is to the classical random linear 
oscillator. Particular attention is given to thermal 
equilibrium. The Einstein-Bose distribution law is 
derived by requiring equilibrium under arbitrary in­
finitesimal changes in the coupling among systems in a 
collection, without assuming a grand canonical or other 
particular distribution. 

2. RANDOM OSCILLATOR 

Let the amplitude q(t) of a linear oscillator satisfy 

dq(t)/ dt+ibq(t) =0, (2.1) 

where b is a real time-independent parameter which is 
statistically distributed over an infinite ensemble of 
realizations of the oscillator. We shall be interested in 
determining the function G(t)=(G[ let»), where ( ) 
denotes ensemble average and G [ ] (I) is the response 
function 8 defined for - 00 <t< 00 by 

dG[ ](t)/dt=-ibG[ let), G[ ](0)=1. (2.2) 

We have, immediately, 

G(t) = (exp( -ibt») = JOO exp( -ibt)P(b)db, 
-00 

where PCb) is the normalized probability density for b. 
Hence, 

G(w)=P(w), (2.3) 
where 

G(w) = (211")-lj oo G(t) exp(iwt)dt. 
-00 

Since PCb) ;:::0, G(w) must satisfy the realizability con­
dition 

G(w)= I G(w) I. 
A particular consequence of Eq. (2.4) is 

IG(t)1 :::;G(O) = 1, 

(2.4) 

(2.5) 

which also follows from the fact that 1 q(t») is a constant 
of motion in each realization of the oscillator. 

Now suppose that PCb) is not known in closed form, 
but instead is specified by the infinite set of moments 
(b), (b2 ), (b3), •••• Then, by integrating Eq. (2.2) from 
o to t, iterating, and averaging, we may generate the 
formal solution. 

00 

G(t)=1+L: (-i)n(bn)tn/nL (2.6) 
n-1 

Equation (2.6) corresponds precisely to the per­
turbation series for the averaged Green's function in 
certain statistical field physics problems. Let us explore 
its validity for the present problem by taking the 

8 The reason for the peculiar bracket notation will become clear 
in Sec. 3. 
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example of Gaussian PCb). Then we have 

G(w)= (27r(b2)-! exp( -tw2/(b2), 

G(t) = exp( - t(b2)t2). 

(2.7) 

(2.8) 

But let us suppose that we do not know this closed 
form and instead are given the moment values 

(bn)=O (n odd), (b2n )= (!(b2)n2ntjn!. (2.9) 

By Eq. (2.6) we have 

'" G(t)=l+L: (-!(b2)f2)n/n!, (2.10) 
n-l 

which, of course, is the power series expansion of Eq. 
(2.8). 

The following observations may be made concerning 
Eq. (2.10). First, it is absolutely convergent for all t. 
Second, for I> 2/ (b2)! the convergence rapidly becomes 
very poor so that very many terms must be taken to 
obtain a good approximation. Third, if the series is 
truncated after any finite number of terms, we have 
G(I) -> <Y:!, t -> <Y:!, in violation of the basic realizability 
condition (2.S). Thus, at no finite stage of the iteration 
treatment do we obtain an approximation with uniform 
validity for all I, and, in particular, at no stage does 
the spectral density G(w) exist. 

Let us next apply a second approximation scheme 
which has been widely used in statistical field physics. 
From Eq. (2.2) we may obtain the infinite set of coupled 
equations 

dG(I)!dl=-i(bG[ ](t») 

d(bG[ ] (t»/dl= -i(b2G[ let») 

d{b2G[ ] (t»/dt= -i(b3G[ ](t» 

G(O)= 1, 

(bG[ ](0»=0, 
(b2G[ ] (0»)= (b2), (2.11) 

We may close off this hierarchy at successively higher 
stages by taking the zeroth approximation that band 
G[ ] (t) are statistically independent, and then admitting 
successively higher-order cumulants of the joint dis­
tribution (higher "correlations" in the language of 
statistical field physics). Let us again assume Eq. (2.9). 
Then the appropriate successive closure approximations 
are 

(bG[ ] (1»= (b)G(t) =0, 

(b2G[ ](t»=(b2)G(t), 

(b3G[ ] (t»)=3(b2)(bG[ let»~, 

(b4G[ ](t»=6(b2)(b2G[ ] (t»-3(b2)2G(t), 

(2.12) 

[Note that if G [ ] (t) were statistically independent of b 
then all these relations would be exact.] On using these 
relations in turn to close off Eq. (2.11) at successively 

higher stages, we obtain 

G(t)= 1, 

G(t)=cos(b.t), 

G(t)= i+t cos(v'Jb.t), 
1 ( . / [, (2.13) 

G(t)="6 3+v 6) cos (3-Y6H.t] 
+H3-y6) cos[(3+y6)tb.l], 

where b. = (b2)t. 
Beyond the zeroth stage, which yields identical 

results in the two cases, the sequence (2.13) is distinctly 
superior to the approximations obtained by truncating 
Eq. (2.10). All members of the sequence satisfy Eqs. 
(2.4) and (2.S). In common with the iteration scheme, 
the first n even derivatives of G(t) at t=O are correct 
in the nth approximation. However, there still is no 
uniform validity in the sense G(t) -> 0, 1-> <Y:!. None 
of the moments Jo"'tnG(t)dt (n= 1, 2, ... ) exist for any 
approximation in the sequence, whereas they all do 
f~r the exact solution. Alternatively, we may note that 
G(w), which is smooth in the exact solution, is a sum 
of 0 functions in any of the cumulant-discard approxi­
mations. The convergence to the exact G(t) is still very 
poor for I> 2/b •. 

It is clear that the random oscillator exhibits in 
acute form certain shortcomings of the iteration (per­
turbation) and cumulant-discard approaches to dy­
namical equations which are nonlin!!ar in stochastic 
quantities. Both for this reason and because of its 
simplicity, we shall use the random oscillator to illus­
trate the alternative approach which is the subject of 
this paper. The sensitivity to inadequacies in the 
method of approximation arises because the solution to 
the "unperturbed" equation, obtained by replacing the 
right-hand side of Eq. (2.2) with zero, has a mono­
chromatic spectrum. In this respect, it resembles 
certain limiting cases of statistical field theory problems 
which are of current interest and to which our approach 
will be applicable. Examples are a quantum-mechanical 
particle in a random potential in the WKB] limit, 
turbulence at infinite Reynolds number, and, in a less 
direct sense, a second-quantized many-boson system 
at very low temperature. 

3. COLLECTIVE REPRESENTATION FOR A 
SET OF OSCILLATORS 

We shall now describe a dynamical representation 
which is appropriate for formulating the stochastic 
models promised in Sec. 1. We shall introduce the repre­
sentation formally and then give a physical interpreta­
tion and a comparison with more familiar concepts. 

In Sec. 2 we treated an ensemble of realizations of a 
single oscillator. Now let us consider a collection of M 
oscillators (M = 25+ 1, 5=positive integer) whose fre­
quencies are identically and independently distributed 
over an ensemble of realizations of the collection. We 
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which, of course, is the power series expansion of Eq. 
(2.8). 

The following observations may be made concerning 
Eq. (2.10). First, it is absolutely convergent for all t. 
Second, for I> 2/ (b2)! the convergence rapidly becomes 
very poor so that very many terms must be taken to 
obtain a good approximation. Third, if the series is 
truncated after any finite number of terms, we have 
G(I) -> <Y:!, t -> <Y:!, in violation of the basic realizability 
condition (2.S). Thus, at no finite stage of the iteration 
treatment do we obtain an approximation with uniform 
validity for all I, and, in particular, at no stage does 
the spectral density G(w) exist. 

Let us next apply a second approximation scheme 
which has been widely used in statistical field physics. 
From Eq. (2.2) we may obtain the infinite set of coupled 
equations 

dG(I)!dl=-i(bG[ ](t») 

d(bG[ ] (t»/dl= -i(b2G[ let») 

d{b2G[ ] (t»/dt= -i(b3G[ ](t» 

G(O)= 1, 

(bG[ ](0»=0, 
(b2G[ ] (0»)= (b2), (2.11) 

We may close off this hierarchy at successively higher 
stages by taking the zeroth approximation that band 
G[ ] (t) are statistically independent, and then admitting 
successively higher-order cumulants of the joint dis­
tribution (higher "correlations" in the language of 
statistical field physics). Let us again assume Eq. (2.9). 
Then the appropriate successive closure approximations 
are 

(bG[ ] (1»= (b)G(t) =0, 

(b2G[ ](t»=(b2)G(t), 

(b3G[ ] (t»)=3(b2)(bG[ let»~, 

(b4G[ ](t»=6(b2)(b2G[ ] (t»-3(b2)2G(t), 

(2.12) 

[Note that if G [ ] (t) were statistically independent of b 
then all these relations would be exact.] On using these 
relations in turn to close off Eq. (2.11) at successively 

higher stages, we obtain 

G(t)= 1, 

G(t)=cos(b.t), 

G(t)= i+t cos(v'Jb.t), 
1 ( . / [, (2.13) 

G(t)="6 3+v 6) cos (3-Y6H.t] 
+H3-y6) cos[(3+y6)tb.l], 

where b. = (b2)t. 
Beyond the zeroth stage, which yields identical 

results in the two cases, the sequence (2.13) is distinctly 
superior to the approximations obtained by truncating 
Eq. (2.10). All members of the sequence satisfy Eqs. 
(2.4) and (2.S). In common with the iteration scheme, 
the first n even derivatives of G(t) at t=O are correct 
in the nth approximation. However, there still is no 
uniform validity in the sense G(t) -> 0, 1-> <Y:!. None 
of the moments Jo"'tnG(t)dt (n= 1, 2, ... ) exist for any 
approximation in the sequence, whereas they all do 
f~r the exact solution. Alternatively, we may note that 
G(w), which is smooth in the exact solution, is a sum 
of 0 functions in any of the cumulant-discard approxi­
mations. The convergence to the exact G(t) is still very 
poor for I> 2/b •. 

It is clear that the random oscillator exhibits in 
acute form certain shortcomings of the iteration (per­
turbation) and cumulant-discard approaches to dy­
namical equations which are nonlin!!ar in stochastic 
quantities. Both for this reason and because of its 
simplicity, we shall use the random oscillator to illus­
trate the alternative approach which is the subject of 
this paper. The sensitivity to inadequacies in the 
method of approximation arises because the solution to 
the "unperturbed" equation, obtained by replacing the 
right-hand side of Eq. (2.2) with zero, has a mono­
chromatic spectrum. In this respect, it resembles 
certain limiting cases of statistical field theory problems 
which are of current interest and to which our approach 
will be applicable. Examples are a quantum-mechanical 
particle in a random potential in the WKB] limit, 
turbulence at infinite Reynolds number, and, in a less 
direct sense, a second-quantized many-boson system 
at very low temperature. 

3. COLLECTIVE REPRESENTATION FOR A 
SET OF OSCILLATORS 

We shall now describe a dynamical representation 
which is appropriate for formulating the stochastic 
models promised in Sec. 1. We shall introduce the repre­
sentation formally and then give a physical interpreta­
tion and a comparison with more familiar concepts. 

In Sec. 2 we treated an ensemble of realizations of a 
single oscillator. Now let us consider a collection of M 
oscillators (M = 25+ 1, 5=positive integer) whose fre­
quencies are identically and independently distributed 
over an ensemble of realizations of the collection. We 



                                                                                                                                    

DY:\fAMICS OF NONLINEAR STOCHASTIC SYSTEMS 127 

shall be interested in the limit M -> 00, so that in 
reality we are introducing a kind of two-dimensional 
distribution. In place of the frequencies and amplitudes 
of the M individual oscillators, let us adopt the col­
lective parameters and coordinates 

ba=M-1 Ln exp (i21ran/M)b (nb 

qa(t) =M-l Ln exp(i21ran/ M)q(n] (I), (3.1) 

(a=0,±1, "',±S) (n=1,2, "',M), 

where ben] and q(n] (t) are the frequency and amplitude 
0f the nth oscillator.9 The identities 

yield 

M-I La exp[i211'a(n-m)/M]=on.m, 

M-I Ln exp[i211'n(a-{1)/M]=oa.,s 

ben] =M-l La exp( -i211'an/M)ba, 

q[n] (t) = M-l La exp( -i211'an/ M)qa(I). 

(3.2) 

(3.3) 

Let us adopt hereafter the cyclic convention a±M =a, 
which clearly is consistent with Eqs. (3.1) and (3.3). 

From Eqs. (3.1) and (3.2) we easily find 

b-a=ba*, La bab-a= Ln b[n]2, 

La qa(t)qa *(t') = Ln q[n] (t)q(n]*(t'), 
(3.4) 

where we have used b(n]=b[n]*' From the equations of 
motion 

(3.5) 

we find 

have 

(b [n]b [m,b (r]b [.]) 
= (On,mOr .• +On.rOm .• +On .• Om.r)(b2)2, (3.9) 

where (b2>= (b[n]2>, which is the same for all n. Then, 
by Eq. (3.1), 

(ba·· ·b,,)=O (odd number of factors), 

(bab{j) = oaH(b2) (OaH=OO.a+{j), 
(3.10) 

(bab{jb~b.)= (OaHOH.+OaH0,s+.+Oa+.OH'Y) (b2)2, 

For any univariate ben] distribution we find from Eq. 
(3.7), 

(Ga.,s(t) > = Oa.,sC(t), 

(b,sCy.a(t» = Oa.H'YM-!(bG[ ] (t», 

(Ga.'Y (t)G'Y.a *(t» 

=Oa.yIG(t)12+M-l(IG[ ](t)12)-IG(t)12]. 

(3.11) 

Here G[ ] (t) denotes G(n.n] (I), which is the same for all 
n, and G(t) = (G[ ] (I», as in Sec. 2. In the limit M -> ac, 
with which we are concerned, Eq. (3.11) gives 

(Ga.a(t) )=G(t), (I Ga.a(t) -G(t) 12)= O(M-I), 

(Ga.~(t)G~.a*(t»=O(M4 (a~'Y), (3.12) 

(byGa_y.a(l) >= O(M-I). 

(3.6) These relations show that the variance of 

where a-/3 is to be interpreted according to the cyclic 
convention. This shows that the new coordinates, in 
contrast to the old, are dynamically coupled. By Eq. 
(3.4), La qa (t)qa* (t) is a constant of motion. Let 
G[n.m] (t) denote the solution of Eq. (3.5) with q[r] (0) 
=Or.m (all r) and let Ga.~(t) denote the solution of Eq. 
(3.6) with q"(O)=o,,.~ (all !J.). Since the individual oscil­
lators are uncoupled, we have G(n.m](t)=On.mG(n.n](t). 
Hence, by Eqs. (31.) and (3.3), and the linearity of the 
equations of motion, 

Ga,~(I)=M-I Ln exp[i211'(a-'Y)n/M]G(n.n] (t). (3.7) 

The functions Ga . ..,(t) constitute the response matrix of 
the collection of oscillators in the new representation, 
.and the G[n.m] (t) play this role in the old representation. 

The statistical properties of the ba are easily found 
from the assumption that the ben] are identically and 
independently distributed. By Eqs. (3.1) and (3.2), we 
have immediately 

For Gaussian ben] all odd-order moments vanish, and we 

9 Throughout this paper, quantities referring to individual 
systems wiIJ be labeled with square-bracketed Latin indices and 
collective quantities will be labeled with un bracketed Greek 
andices.. 

Ga.a(t)=M-I LnG[n,n](t) 

vanishes in the limit. That is, Ga.a(t) is statistically 
sharp. They further imply that the effective dynamical 
coupling between any given pair of degrees of freedom 
qa and q'Y is infinitely weak in the limit. Equations (3.12) 
were obtained without explicit reference to Eq. (3.6), 
but their dynamical implications may also be inferred 
from the latter. The direct dynamical coupling of qa 
to any qy arises from only one of the M terms, each 
O(M-l), on the right-hand side of Eq. (3.6). Equations 
(3.12) show that the effective coupling is still O(M-I) 
when the indirect interaction of qa and qy through all 
the other degrees of freedom is included. The absence 
of fluctuations in Ga.a(t) in the limit is consistent with 
the fact that this function is determined by the simul­
taneous interaction of qa with an infinite number of 
other degrees of freedom; qa exhibits negligible self­
coupling, in contrast to q(n]. 

It is apparent, both from Eq. (3.1) and the convolu­
tion structure of Eq. (3.6), that the qa have a close 
formal relation to Fourier coefficients. The physical 
significance of the new representation is best brought 
out, in fact, by a comparison with analysis into wave­
number or frequency components. Let if;(x,t) be a 
scalar field, associated with an extended (one-dimen­
sional) dynamical system, which is described by an 
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ensemble statistically invariant under translation (e.g., 
(tf; (x,t)tf; (x',t) )= (tf;(x+y, t)tf;(x' +y, t» for all y). The 
natural coordinates for describing the field then are 
wavenumber components, which change only by a 
phase factor under translation. Suppose, instead, the 
ensemble were invariant under time displacement. Then 
the natural coordinates would be frequency components. 

Physical systems usually are neither statistically 
homogeneous nor stationary. However, if we form a 
collection of identically distributed individual systems, 
then obviously (and, it will appear at first sight, trivi­
ally) there is statistical invariance under permutation 
within the collection. The new representation is natural 
in the presence of this invariance in the same way that 
a wavenumber representation is natural when there is 
translational invariance. Actually, the permutation 
invariance is much broader than called for by strict 
analogy to translational invariance. Consequently, all 
the qa (ar60) have identical statistical properties,lO 
while, in general, the statistical properties of wave­
number components vary with wave number. 

To examine the analogy further, let us take 

L/2 

tf;k(t) = L-I f tf;(x,t) exp( -ikx)dx 
-L/2 

(k=27ra/ L, a=O, ±1, ... ), 

where we adopt the customary device of making the 
field cyclic with a period L which is as large as we wish 
compared to any relevant correlation length. Let us 
divide L into very many segments, each still very large 
compared to any correlation length. Then each segment 
contains a subsystem which has only a negligible 
statistical dependence on its neighbors. Furthermore, it 
is plausible to suppose that (over times which are not 
too large) each subsystem has only a negligible dy­
namical interaction with its neighbors. Then we validly 
may regard the set of subsystems as analogous to the 
collection of perfectly independent systems used above 
in defining the qa. Considered in this way, the tf;k and 
the qa (for large M) play essentially similar roles. Both 
are linear combinations of the physical coordinates of 
a very large number of effectively independent systems.ll 

4. FORMULATION OF MODEL PROBLEMS 

Consider, instead of Eq. (3.6), the more general 
equations 

10 The special role played by 0<=0 will become clear in Sec. 8. 
11 It is of interest to indicate how the qa might be measured, in 

principle. Let a device sample each oscillator in the collection in 
turn, at time intervals T, proceeding in order of increasing nand 
returning from the M th oscillator to the first to repeat the cycle 
continuously. At each sampling instant let the device produce a 
sharp pulse, of strength proportional to q[nJ (/).If T is small enough 
that many cycles are completed before the q[nJ change appre­
ciably, the spectrum of the JlUlse train will approximate a line 
spectrum with frequencies a/ M T and amplitudes proportional to 
the qa(t). 

where q,a.f3,a-f3 is independent of t and the same for 
every realization in the ensemble. We shall be interested 
in stochastic assignments of q,a,f3,a-f3 in the sense that 
this quantity will exhibit random changes in value as 
a and (3 are changed. By Eqs. (3.3) and (3.2), Eq. (4.1) 
implies 

dq[n] (t)/ dt= -i Lr,. A [n,r .• ]b[r]q[s] (t), (4.2) 
where 

A [n,r,.] =M-2 LIl,'Y exp{i27r[{3(r-n) 
+'Y(s-n)J/M}q,~'Y,Il,')" (4.3) 

Thus, the individual oscillators in the collection now 
are dynamically coupled. When q,a,Il,a-ll= 1 for all a and 
(3, then A [n,r,.] = i5 r,ni5.,n so that we recover the original 
collection of uncoupled oscillators. The quantities 
q[n] (t)q[n]*(t) are no longer constants of motion in the 
general case. However, we shall require 

q,a,Il,a-Il=q,,,,-Il,-Il,a *. (4.4) 

Then, since b_fJ=bll*, we find 

d(Ln q[n]q[n]*)/dt=d(La qaqa*)/dt=O. (4.5) 

The response matrix corresponding to Eq. (4,1) 
satisfies 

dGa,"(t)/dt= -iM-l LIl q,a,Il,a-llb~a-Il,'YU), 
G"",,(O) = 15 01 ,,,(, (4.6) 

Suppose that we carry out an iteration expansion of Eq. 
(4.6). The coefficient of tn in the resulting power series. 
for Ga,"((t) is a sum over products of n factors q, and n 
factors b. It is clear, from the initial condition and the 
way the indices combine, that in each product the sum 
of the indices of the b factors must be a-I'. Hence, by 
Eq. (3.8), 

(G",,"(t»=O (ar6')'). 

By Eqs. (3.1), (3.3), and (4.7), we have 

(G[n,m] U» 

(4.7) 

=M-I La exp[ -i27r(n-m)a/MJ(Ga,a(t»: (4.8) 

Therefore, if (Ga,a(t» is independent of a, we have, by 
Eq. (3.2), 

(G[n,m] (1»= i5n,mG(t), G(t) = (Ga,a(t», (4.9) 

where G(t) has now the same meaning as in Sec. 3. We 
shall be concerned only with q, assignments which yield 
Eq. (4.9), and, presently, we shall exhibit certain of 
their properties. 

We wish now to develop an expression for d( G a, a (t) ) / dt 
by expanding the right-hand side of Eq. (4.6), with 
')'=a. By writing 

H a-Il,Il,aU) = -iM-lq,a,Il,a-llbIlGa-Il,a(t), (4.10) 

we may develop (Ha-Il,Il,a(t» in powers of t by using 
the iteration expansion for Ga- Il ,a(t). The coefficient of 
t r- l in the resulting series is a sum, over the indices of 
all b factors except bll , of products of r factors band r . 
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factors cf> [including the factors bp and cf>a,p,a-P which 
appear explicitly in Eq. (4.10)]' Let us take Gaussian 
b[nj. (We shall return to the general case in Sec. 9.) 
Then, by Eqs. (3.8) and (3.10), only the odd powers of 
t survive and in the coefficients of these the indices of 
the b factors must be equal and opposite in pairs. In 
this way we find 

IX) 

(Ha_f3 ,f3,a(t»=M-I1: 1: (-1)nC2n;p(a, (3, a-(3) 
n=l p 

X {b2)n[2n-lj (2,Z-1) 1, (4.11) 

where Mn-ICzn;p(a, (3, a-(3) is a sum of products of 
2n factors cf> and the index p (p=l, 2, "', 2n!/2nn!) 
labels (in an arbitrary order) the contributions which 
arise from all the possible pairings of the b factors. 

The C2n;p(a, {3, a---'{3) through n= 2 are 

C2;1( )=cf>a,p,a-fJcf>,,-t3,-Il,a, 

C4; 1 ( )= M-l 1:'Y cf>",fJ,a-fJcf>a-fJ,-f3,acf>a,'Y,a-ycf>a-'Y.-'Y.a, 

C4;2( )=M-l Lr cf>",f3,a-fJcf>,,-i3,r.,,-i3-r 

Xcf>,,-i3-'Y,-'Y,a-!3cf>a-fJ,-fJ,a, 

C4;3( )=M-l1:'Y cf>a,p,a-fJcf>a-fJ,'Y,a-{J-'Y 

Xcf>"-t3-r,-t3,a-ycf>a-'Y.-'Y,a. 

(4,12) 

The cf> factors in Eqs. (4.12) other than cf>a,i3.a-i3 are 
written from the right in the order in which they arise 
in the iteration process. (The values of p are assigned 
arbitrarily.) 

Each C2n;p(a, {3, a-{3) is closed in the sense that the 
initial index on any factor equals the final index on the 
factor to its immediate left [when ordered as in Eqs. 
(4.12)J while the middle indices are equal and opposite 
in pairs. This permits a systematic diagrammatic repre­
sentation of the C2n;p(a, {3, a-{3) and therefore of Eq, 
(4.11). With each cf>1',}.,(f or cf>1',A,,,* let us associate a 
vertex as shown in Fig. 1 (a) or 1 (b), respectively. The 
C2n;p(a, {3, a-{3) then may be obtained by the follow­
ing rules: 

Connect 2n points by 2n solid line segments to form a single 
closed loop; then connect all the points in pairs by n dashed line 
segments to form a closed diagram of 2n vertices. Equip all the 
solid line segments with arrows pointing in the same sense. Choose 
one vertex, equip its dashed line segment with an ingoing arrow, 
and label its three line segments to correspond to <l>a,fI,a-/J in the 
sense of Fig, 1 (a). Call this the fixed vertex and identify it by 
circling. Label the remaining dashed line segments 'Y, E, ••• in 
any order and equip them with arrows (whose direction does not 
matter).12 Complete the labeling of the solid line segments so 
that the sum of the indices labeling the ingoing lines equals the 
sum of those labeling the outgoing lines at every vertex. Now 
write the product of the <I> factors associated with all the vertices 
according to Fig. lea), or according to Fig. l(b) and Eq. (4.4). 
For each n there are 2n!/2nn! distinct diagrams of this type, cor­
responding to the 2n!/2nn! ways of connecting the vertices by 
dashed lines after one is chosen as the fixed vertex. Each diagram 

12 Reversal of the direction of the arrow on a dashed line 
labeled h corresponds to the trivial notation change h ->-h for 
the summed index h in the associated CZn;p(a, (J, a-{J). 

(oj (b) 

FIG. 1. Vertices representing <1>"'>"6 and <1> ... >.,,* for 
the random oscillator. 

corresponds to one C2n;p(a, fl, a-fl) (according to an arbitrary 
rule for assigning the values of p) and the latter is equal to MI-n 

times the sum over 'Y, E, •• , of the associated <I> product. 

The diagrams associated with Eqs. (4.12) are shown in 
Fig.2. 

It is clear from Eq. (4.11) that {Ga., a. (t) ) will be 
independent of a, and therefore Eq. (4.9) will hold, if 

M-l Lil C2n;p(a, {3, a-{3)=C2n;", 

where C2n ;p is independent of a. In this case, 

00 

(4.13) 

G(t)=l+ 1: 1: (_1)nC2n;p(b2)n[2nj2nl. (4.14) 
n=l p 

We shall be concerned hereafter only with I/> assign­
ments such that Eq. (4.13) is satisfied when M _ <Xl. 
The C2n;p may be interpreted as moments of the dis­
tribution of the quantity cf>1'.A,I'-X over the set of index 
values J.I. and A. 

Let us associate with C211;p the diagram for 
C2n;p(a, {3, a-{3), but with index labels and dashed line 
arrows (which are now superfluous) omitted. By Eq. 
(4,13), we have C2n;p=M-21:""t3 C2n;p(a, {3, a-{3). Re­
calling the cyclic convention J.I.=J.I.±M (any J.I.), we see 
that the summation in this expression is equivalent to 
one over all M values of all the indices labeling lines in 
the diagram, subject only to the sum condition at each 
vertex. Consequently, the expression is independent of 
which is the fixed vertex; its value depends only on the 
order and topology of the diagram. 

It is important to point out that Eq. (3.12) is valid 
for general cf>'s satisfying Eq. (4.13). In particular, 
Ga,a(t) is statistically sharp (M - <Xl). In the original 
case (all cf>'s unity) this was so because qa interacted 
simultaneously with all the other degrees of freedom, 
and negligibly with itself. These properties clearly 
characterize the general case also, provided the cf>'s are 
bounded as M - <Xl. The validity of Eq. (3.12) in the 
general case is easily demonstratedl3 for any power of t 

([; '" , 
/ .,. '/'f 

,..,..t. .... / .... )0.. 

, .. I " p .... 
,; 

~ .. " 
Q o-/3-r a- -r 

(a) (b) (e) (d) 

FIG. 2. Diagrams for C2;1(), C.;l(), C.;2(), and C.;3(). 

13 See Appendix A. (a) Our "irreducible" diagrams are "proper" 
diagrams in the terminology of quantum field theory. 
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in the iteration expansion of the left sides of the equa­
tions, if one uses Eq. (3.10) and the fact that the cp's 
are the same for all realizations. We shall use the 
abbreviations C and C() to denote C2n ;p and 
C2n;p(a, /3, a-/3), respectively, when it is not desired 
to specify particular subscripts and arguments. 

Let us define a reducible C as one which may be 
factored into two or more C's of lower order, and an 
irreducible C as one which may not. Let us define a 
reducible C( ) as one which may be factored into the 
product of a lower-order C( ) with one or more C's, 
and an irreducible C ( ) as one which may not. It follows 
that each reducible C is a product of irreducible C's 
and each reducible C ( ) is a product of an irreducible 
C( ) with irreducible C's. It is easy to see from our 
rules that reducible C( )'s and C's (and only they) are 
associated with diagrams in which there is a part, or 
parts, connected to the rest of the diagram by only solid 
lines.13a Thus, C 2; 1 and C 4; 3 are irreducible, but C 4; 1 and 
C4;2 are reducible. By using Eq. (4.13) we find 

C4;1=C4;2= (C2;1)2. 

Let us write each C( ) which appears in Eq. (4.11) 
as the product of an irreducible C( ) and irreducible 
C's, and then collect all the terms proportional to each 
irreducible C( ). We obtain a result of the form 

(H a-~,B,a(t»= M-l :En :Epirr( -1)n 

XC2n;p(a, /3, a-f3)f2n;p(t), (4.15) 

where :E irr denotes the sum over irreducible diagrams 
only. The f2n;p(t) depend on the values of the irreducible 
C's but are independent of a and /3. Each f2n;p(t) 
contains all (odd) powers of t which are ~ 2n-1, since 
each C2n;p(a, /3, a-/3) appears in reducible C( )'s of 
all orders ~2n. The f2n;p(t) turn out to have simple 
expressions in terms of (b2) and G(t) which may be 
found by comparing the explicit power series for 
f2n;p(t) and G(t). However, the same result may be 
obtained more transparently by a variational procedure 
which provides certain dynamical insights. 

There are M(M -1) cp's, and only M sums 
:EB C2n;p(a, /3, a-f3) for given nand p. In the limit 
M ~ 00 it will be possible, therefore, to make wide 
classes of variations tJ.cp such that Eqs. (4.4) and (4.13) 
continue to hold and such that tJ.C2n;p=0 for all finite n. 
Under these constraints, tJ.f2n;p(t) =0. Consequently, 
we have 

tJ.(Ha_f3,~,a(t»=M-l:En :Epirr( -1)nf2n;p(t) 

XtJ.C2n;p(a, (3, a-f3). (4.16) 

Now consider a (finite) variation 

tJ.cpa-f3,-~,a= tJ.cpa,~,a-f3* 

for a particular a and (3, with all the other cp's fixed. We 
may vary the real and imaginary parts of CPa-f3,-B,a 
independently. Identical results are obtained by sup-

posing CPa-f3,-f3,a to vary while CPa-f3,-f3,a*=CPa,f3,a-f3 is 
held fixed, and we shall adopt the latter procedure. 
Then, by Eqs. (4.12), 

tJ.C2;I(a, (3, a-(3)=CPa,~,a-f3tJ.cpa-f3,-f3,a, (4.17) 

while from Eq. (4.13) we see that tJ.C2n;p=O(M-l) for 
all nand p. Thus the constraints stated previously are 
satisfied for M ~ 00. By Eq. (4.6), Ga- f3 ,a(t) satisfies 

dGa- f3 ,a.(t)/ dt 

+iM-t :EO' CPa-f3,--(1,a-f3+vb-"Ga.-f3+v,a.(t) = 0, (4.18) 

The effect of the variation tJ.CPa.-f3,-f3,a. is to produce on 
the right-hand side of Eq. (4,18) the additional term 

-iM-!tJ.cpa-f3,-f3,ab-f3Ga,a(t) 

which, we note, is O(M-!). Now we recall that Ga- f3 ,,,(t) 
is simply the amplitude qa-f3(t) under a particular 
initial condition at 1=0. Therefore, to order M-l, we 
have 

tJ.Ga- f3 ,a(t) = it Ga- B,a-f3(t-s) 

x[ -iM-!tJ.CPa_f3._f3,ab_f3Ga,a(s)]ds, (4.19) 

since Ga- f3 ,a.-f3 is the diagonal response function for qa-f3 
and the perturbation does not affect the initial con­
dition. [Note that tJ.Ga.,a.(t) and tJ.Ga-~,a-~(t) are 
O(M-l) under our constraints.] On referring to Eq. 
(4.10), we obtain tJ.(Ha.-f3,f3,a(t» immediately. It is 
clear that our variation gives tJ.C2n;p(a, (3, a-(3) 
=O(M-l) for all irreducible diagrams with n> 1. Then, 
by Eqs. (4.16) and (4.17), we find 

f2;I(t)= it (b f3L f3Ga.-f3,a-f3(t-S)Ga,a(s»ds (4.20) 
o 

in the limit M ~ co. As we have noted previously, 
Ga,a(t) and Ga- B,a-f3(t) are statistically sharp in the 
limit. Therefore, by Eqs. (4.9) and (3.10), 

f2;I(t)=(b2) it G(t-s)G(s)ds. ( 4.21) 

The higher f2n;p may be found by similar analysis 
based on more general variations. The result is 

(4,22) 

where G( *G)2n-1 is a repeated convolution; e.g. (for 
argument t), 

G( *G)3= it ds i 8 

ds'f" ds"G(t-s)G(s-s') 
o () 0 

XG(s' - s")G(s"). 

On collecting the appropriate relations, we have the 
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O(M-l) under our constraints.] On referring to Eq. 
(4.10), we obtain tJ.(Ha.-f3,f3,a(t» immediately. It is 
clear that our variation gives tJ.C2n;p(a, (3, a-(3) 
=O(M-l) for all irreducible diagrams with n> 1. Then, 
by Eqs. (4.16) and (4.17), we find 

f2;I(t)= it (b f3L f3Ga.-f3,a-f3(t-S)Ga,a(s»ds (4.20) 
o 

in the limit M ~ co. As we have noted previously, 
Ga,a(t) and Ga- B,a-f3(t) are statistically sharp in the 
limit. Therefore, by Eqs. (4.9) and (3.10), 

f2;I(t)=(b2) it G(t-s)G(s)ds. ( 4.21) 

The higher f2n;p may be found by similar analysis 
based on more general variations. The result is 

(4,22) 

where G( *G)2n-1 is a repeated convolution; e.g. (for 
argument t), 

G( *G)3= it ds i 8 

ds'f" ds"G(t-s)G(s-s') 
o () 0 

XG(s' - s")G(s"). 

On collecting the appropriate relations, we have the 
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final result 

00 in 

dG/dt=1:. 1:. (-1)nC2n ;p(b2)nG(*G)2n-I, 
,,=1 p 

G(O) = 1. (4.23) 

The value of this infinite-series integro-differential 
equation for G(t) is that only the irreducible C2n ;p 

appear explicitly. 

5. RANDOM COUPLING MODEL 

We shall now consider a particular stochastic assign­
ment of the q,'s. Let 

q,",i3,a-13= exp (iO",i3,,._!3), 

where (j",!3,"-13 is real and satisfies 

(5.1) 

(5,2) 

For each choice of ex and {3, let (j",!3,"-!3 take a value at 
random in the interval 0 to z'r, subject only to Eq. 
(5.2). The value must be the same, of course, for every 
realization in the ensemble. Now let M ---? 00. Clearly 
this assignment satisfies Eq. (4.4). In addition, it 
yields I q,",i3,a-13 I = 1, and, therefore, retains unaltered 
the strengths of the individual dynamical couplings of 
pairs q", q"-!3 which characterize Eq. (3.6). Now, 
however, the phases of the couplings are completely 
unrelated for different pairs. We shall call the present 
choice the random coupling model.14 

By referring to Eqs. (4.12) and (4.13), we find C2;1= 1, 
as in the true problem (all q,'s unity). Consider C4;3, 

however. Each product in the sum has modulus 1, but 
the phase of the product changes at random with {3 and 
'Y. Consequently, C4;3= o (M-l). In a similar fashion, 
we see that the only C2n;p which survive in the limit 
are those in which the product of q,'s consists entirely 
of conjugate pairs and which, therefore, are reducible 
to powers of C2;1. Consequently, for M ---? 00, 

C2;1= 1, 
(5.3) 

(all irreducible diagrams). 

It follows that Eq. (4.23) reduces to the closed form 

dG/dt+(b2)G*G=O, G(O)= 1. (5.4) 

Equation (5.4) is readily solved by Laplace trans­
formation. We find 

G(t) = J 1 (2b.t)/b.t, 

G(w) = (1rb.)-1[1- (w/2b.)2Ji 

=0 
Clwl ~2b.), 
(lwl>2b.), 

(5.5) 

(5.6) 

where b.= (b2)! as before. Considered as an approxima­
tion to Eqs. (2.8) and (2.7), the present results display 
a type of uniform validity which is absent in any finite 

14 This model is unrelated to the "random phase approximation" 
[D. Pines and D. Bohm, Phys. Rev. 85,338 (1952)]. We make 
no assumption about the phases of the q" themselves. 

FIG. 3. Comparison of G(t) for the true problem and 
the random coupling model. 

stage of the iteration or cumulant-discard schemes 
discussed in Sec. 2. The spectral density of Eq. (5.6) 
is continuous, and Eqs. (2.4) and (2.5) are satisfied. 
All the derivatives of G(w) exists at W=O so that all 
the moments Jo"'t"G(t)dt exist. Equations (2.8) and 
(5.5) are compared in Fig. 3. 

It is important that certain of the properties just 
listed could have been predicted from the sole fact that 
Eq. (5.4) is an exact equation (M ---? 00 ) for a realizable 
q, assignment satisfying Eq. (4.4), and, hence, for a 
conservative dynamical problem. We recall that 
G",,,(t)=q,,(t) when q..,(O)=o",'Y (all ')'). But then 

L'Y q..,(O)q/(O) = 1, 

and, since L'Y q'Y(t)q'Y *(t) is a constant of motion, we 
have I G",.,(t) I ~ 1, whence Eq. (2.5) readily follows. 
To establish Eq. (2.4), let us make, for each realization, 
a similarity transformation 

qa(/) = 1:.'Y B"rq-/ (t), q-/ (t) = 1:." B-r,,-lq,,(t), B.,,, -1= B"., * 

(B"., independent of t) such that Eq. (4.1) is brought 
to the diagonal form 

dq.,' (t)/ dt+i{»-rq/ (&)=0. (5.7) 

Since 1:.'Y q/ q-/*= 1:." q"q" * is a constant of motion, 
the W'Y are real. Now if G'Y,.'(t) is the response matrix 
of the new variables, G..".'(t)=0'Y,' exp( -iw-rt), and, 
therefore, 

G",,,(t)= L'Y .• B"'YG'Y..'(t)B,.,-I= 1:.-rB"'Y B,,'Y* exp( -iw'Yt). 

Hence G",,,(w) is real and nonnegative in each realiza­
tion which implies Eq. (2.4). Finally, we note that 
the ~odel problem resulting from a general realizable 
q, assignment involves the interaction of an infinite 
number of degrees of freedom q" when M ---? 00. From 
this and the fact that the bet are continuously dis­
trib~ted over the ensemble, we may anticipate that 
G(w) exhibits a continuous or band structure and that 
G(t) ---? 0, l---? 00. 

It is possible to understand qualitatively why ~e 
complex detailed dynamics of the random couplmg 
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model lead to a simplification of the statistical dy­
namics and to closure of Eq. (4.23). The function 
(Ga,a(t» describes the decay of qa due to transfer of 
an initial excitation, amplitude qa(O)= 1, to the rest 
of the degrees of freedom. In general, the decay requires 
that certain phase relations be set up between qa and 
the other amplitudes. A phase relation between qa and 
qa-fJ can arise either from direct dynamical coupling 
(involving the coupling coefficients -iM-iq,a.fJ,a-fJbfJ 
and -iM-iq,a-fJ.-fJ,ab-fJ ) or from indirect coupling 
through chains of other modes q'Y' In fact, each term in 
the irreducible diagram expansion Eq. (4.15) may be 
regarded as describing the transfer of excitation from 
qa to qa-fJ along the chain of intermediate modes repre­
sented by the directed solid line segments in the asso­
ciated diagram. The closing of the solid line on itself 
then represents the reaction on mode a and the 
consequent diminution of qa. The factors G, whose 
repeated convolution yields the t2n;p, incorporate the 
effect of the dynamical interaction as a whole on the 
transfer process. This effect is to relax the phase relations 
set up along the chain. 

In the random coupling model, only the direct inter­
action, associated with C2; 1, is effective in the transfer 
of excitation. The contributions associated with the 
indirect paths of interaction cancel, when summed over 
all possible intermediate modes, because of the random 
phases of the q,'s. The coupling of qa and qa-fJ to all the 
rest of the modes, therefore, affects (H a-fJ,fJ,a(t» only 
by relaxing the phase relations induced by the direct 
interaction of these two modes. 

All C2n;p which are expressible as powers of C2;1 have 
the value unity in the random coupling model, and all 
other C2n ;p vanish. Thus we see from Eq. (4.14) that 
the power series for the model G(t) consists of a par­
ticular subset of terms of all orders from the corre­
sponding series for the true problem (all C2n;p unity). 
The terms retained are all those whose associated 
diagrams can be reduced to that for C2;1 (Fig. 2) by 
by iterating any number of times, on any solid lines, 
the contraction operation shown in Fig. 4(a). Examples 
of included diagrams are shown in Fig. 4(b). It follows 
readily from Eq. (5.5) that the number of diagrams of 
this type with 2n vertices is 

,.-- ...... , . , '\ . ... 
(0) 

o , I \ I \ I I 
I \ 

/ \ , 

(b) 

FIG. 4. (a) Contraction operation for the random coupling 
model; (b) typical diagrams included in the random coupling 
model. (Any vertex may be taken as the fixed vertex.) 

{ 
fl2n [J 1 (21)J } (-l)n--

(dt)2n t 1=0 

6. INADMISSIBLE HIGHER APPROXIMATIONS 

For the true problem (all C2n;p= 1), Eq. (4.23) reads 

dG/dl= L (-1)nS2n(b2)nG(*G)2n-l, G(O) = 1, (6.1) 
n=l 

where S2n is the number of irreducible diagrams of 
order 2n. The first few S2n are S2= 1, S4= 1, S6=4, 
Ss= 27,15 The relative success of Eq. (5.4) as an approxi­
mation to Eq. (6.1) suggests that we seek higher ap­
proximations satisfying equations of the form 

R 

dG/dt=L (-1)"S2,,(b2)nG(*G)2n-1, 
n=l 

G(0)=1 (R>1), (6.2) 

which we obtain by giving all irreducible C2n;p the 
value one, n 5,R, and the value zero, n> R. One property 
of Eq. (6.2) can be predicted immediately. We recall 
that Eq. (4.23) represents simply a consolidation of Eq. 
(4.14). The present sums Lp C2n;p (reducible and irre­
dudble diagrams included) clearly do not exceed the 
corresponding sums in the true problem. Since Eq. 
(2.10), which constitutes Eq. (4.14) for that problem, 
is absolutely convergent for all t, it follows that the 
power series expansions of the solutions of Eq. (6.2) 
are absolutely convergent for all t. 

Nevertheless, these solutions are not valid higher 
approximations to Eq. (2.8). The reason is that the 
functions to which their expansions converge become 
infinite as t ---+ r:/,). None of them, therefore, constitutes 
a uniform approximation, and for none of them does 
G(w) exist. We shall illustrate this for R=2. If G(p) 
denotes the Laplace transform of G(t), then Eq. (6.2) 
for this case is equivalent to 

pG (p) = 1- (b2)[G (p )]2+ (b2)2[G (p n. (6.3) 

Let us assume tentatively that G(O)=foooG(t)dt is 
finite. Then 

[G(0)]2=[1±(-3)!J/2(b2), (6.4) 

which is inconsistent with the reality of G(t). Therefore, 
foooG(t)dt cannot be finite. Further analysis readily 
shows that, for real w, Eq. (6.3) is inconsistent with 
Re {G(-iw)} = o (w- r ) , w---+O, if r is any finite power. 
It follows that G(t) grows faster than any power of t 
as t ---+ 00. 

The numerical solutions of Eq. (6.2) for several 
values of R are compared with Eq. (2.8) in Fig. 5. As 
R increases, it will be noted that the approximations 
increase in accuracy for small t but diverge faster at 
large t. In this respect, our present results resemble very 
closely those of truncating the original power series 

1& In general, S2nrf (n-l)n-l. 
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FIG. 5. Solutions of Eq. (6.2) compared with G(t) for 
the true problem (R= <Xl). 

Eq. (2.10) after a finite number of terms. They do not 
appear to represent a significant improvement over the 
latter. 

The failure of the present approximations has an 
immediate interpretation. Divergence of G(t) as t ~ 00 

is inconsistent with Eq. (2.5). It follows that the values 
-of the irreducible C's implied by Eq. (6.2) are not 
realizable by any assignment of the cp's consistent with 
Eq. (4.4). Thus these approximations do not correspond 
to any dynamical model in our sense.16 

If we regard a stochastic assignment of the CPa.{3.a-{3 

for M ~ 00 as a distribution over the set of index 
values a and (3, then the C2n ;p are moments of this dis­
tribution and there are an infinite set of realizability 
inequalities which they must satisfy. The values 
C 2; I = 1, C2n;p= 0 (all higher irreducible diagrams) for 
the random coupling model correspond to complete 
statistical independence of the CPa.{3.a-{3 = CPa-{3.-{3. a * in 
this sense. Nonvanishing values for the higher irre­
ducible C's imply statistical correlation among the cp's. 

The nature of realizability inequalities for simpler 
statistical problems suggests that, when C2; I = 1, a wide 
choice of realizable nonzero values can be given to the 
higher irreducible C2n ;p, provided these values are small 
enough. Let us consider the assignment 

C 2;1=1, C4;3=a, C2n;p=O 
(all higher irreducible diagrams), (6.5) 

where a is a real constant. For a= 1 this gives Eq. (6.2), 
R=2. Instead of Eq. (6.3), we now find, in the general 
case, 

pG(p)= 1- (b2)[G (p)]2+a(b2)2[G (p)J4, (6.6) 

16 The relations between irreducible and reducible e's, to which 
we have appealed in discussing Eq. (6.2), are not affected by the 
unrealizability of the C's. These relations may be regarded here 
as formal implications of the requirement that Eq. (4.14) agree 
with the power series for G (t) obtained by the iteration solution 
of Eq. (4.23). 

whence 
[G(O)]2= [1- (1-4a)lJ/2a(b2). (6.7) 

Equation (6.6) yields real, nonnegative G(w) for all w if 

(6.8) 

which suggests that Eq. (6.8) may represent the range 
of realizability of Eq. (6.5). In Fig. 6, the solution 
G(w) = 7r-1 Re{G(-iw)} on the relevant branch of 
Eq. (6.6) is compared, for several values of a, with 
Eqs. (2.7) and (5.6). It will be noted that the form of 
G(w) changes continuously with a up to the limit a= t. 
where the slope at w=O changes abruptly from 0 to 00. 

It is apparent that none of the present approximations 
represents a substantial improvement over the random 
coupling solution (a=O). For a<O, the form of G(w) 
changes continuously with a down to the limit a= -l2; 
there, a singularity appears at the cutoff point of the 
spectrum. We conclude tentatively, lacking contrary 
evidence, that Eq. (6.8) does represent the range of 
realizability of Eq. (6.5). 

The results of the present section suggest that great 
caution be exercised in carrying out partial summations 
of diagrams in the power series expansion for G(t). It is 
by no means true that the more terms summed, the 
better the approximation. Our inadmissible approxi­
mation Eq. (6.2) (R= 2) is equivalent to the retention, 
in Eq. (4.14) for the true problem, of all terms whose 
diagrams can be reduced to the diagram for C2;1 by 
iterated application, on any solid lines, of the contrac­
tion operations shown in Fig. 7(a). Examples are shown 
in Fig. 7(b). Thus, the terms retained are selected 
according to well-defined and plausible topological 
properties of the diagrams. Moreover, as we have noted, 
in the t domain they constitute an absolutely convergent 
subseries of an absolutely convergent series. 

It will have been recognized by this point that the 
diagram summations we have employed are intimately 
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FIG. 6. Solutions G(w) of Eq. (6.6) for several values of a compared 
with G(w) for the true problem. 
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FIG. 7. (a) Contraction operations for Eq. (6.2) with R=2; (b) 
typical diagrams included by Eq. (6.2) with R= 2. 

related to summations of perturbation series terms in 
quantum field theory and quantum statistical mechan­
ics. Our present results suggest that caution be exercised 
in these problems also. There too, it is possible that 
plausible-appearing and summable classes of diagrams 
are better omitted than included. We hope to return to 
these questions in a later paper. 

7. SECOND STOCHASTIC MODEL 

The results of the last section emphasize the desira­
bility of seeking higher approximations to Eq. (6.1) 
which correspond to realizable values of the C's. We 
shall now describe a second stochastic model for which 
G(w) satisfies Eq. (2.4) and is substantially closer to 
Eq. (2.7) than is the random coupling result. Consider 
the contraction operation shown in Fig. 8(a). Each 
application of it to a diagram reduces the number of 
vertices by two. Let us take C 2; 1 = 1 and assign the 
value an- 1 to all irreducible C2n ;p whose diagrams can 
be transformed into that for C2; 1 by n-1 applications, 
anywhere, of this operation. These diagrams represent 
an infinite subset of the terms in Eq. (4.23). [Examples 
are shown in Fig. 8(b).J Let us assign the value zero 
to all other irreducible C2n ;p. [Examples are shown in 
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©-+ 
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(e) 

FIG. 8. (a) Contraction operation for the second stochastic 
model; (b), (c) typical diagrams included and excluded respec-
tively, in the second stochastic model. ' 

Fig. 8(c).J Now let us take a= 1. Clearly this implies 
the value 1, as in the true problem, for all reducible 
and irreducible C2n ;p whose diagrams can be trans­
formed into that for C2;1 by repeated application of the 
line operation of Fig. 4(a) and the vertex operation of 
Fig. 8(a). All other C2n ;p have the value zero. 

We have not found an explicit construction for this 
model of the type provided by Eq. (5.1), et seq., for 
the random coupling model. Consequently, we have no 
proof of realizability. As we shall see, however, examina­
tion of the dependence of G(w) on a, in analogy to Sec. 
6, suggests that the model is realizable. 

Since the present model retains an infinite subset of 
terms in Eq. (4.23), it does not directly yield a closed 
equation for G(#). However, we can obtain a closed 
system [Eqs. (7.6) and (7.17)J by considering simul­
taneously the first two equations of an hierarchy analo­
gous to Eq. (2.11). Let 

H (t)= L~<H a-M,a(t)= dG(t)/ dt. 

From Eq. (4.6) we find 

dH(t)/dt= - L~ tPa,~,a-fJ<Pa-~,-~,a 
X<b~b_~a,a(t)+J(t), H(O)=O, (7.1) 

where 
(y"-~) 

FrG. 9. Fixed diagram 
part for J (t). 

J(t)= -M-l L tPa.f3.a-fJ<Pa-f3."f.a-f3-"f 

X (b f3b"fGa-f3-"f. a (t) ). (7.2) 

Since Ga.a(t) is statistically sharp (M ~ 00), it follows 
from previous relations that the first term on the 
right-hand side of Eq. (7.1) may be rewritten 
-C2;1{b2)G(t). Hence, when C2;1= 1, we have the 
equations 

dG(t)/dt=H(t), G(O)= 1, 

dH (t)/ dt= - (b2)G(t)+J (t), H (0) = O. 
(7.3) 

By Eq. (4.23) we have 

00 irr 

H=L L (-1)nC2n;p(b2)nG(*G)2n-l. (7.4) 
n=l p 

An analogous expansion for J(t) may be found by 
analysis very similar to that which leads to Eq. (4.23). 
The result is 

00 J 

J=L L (-1)nC2n;p(b2)nG(*G)2n-2, (7.5) 
n=2 p 

where L J is defined as follows: Construct a diagram 
part as shown in Fig. 9. Call it the fixed part. [The two 
vertices correspond to the two tP factors which appear 
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line operation of Fig. 4(a) and the vertex operation of 
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We have not found an explicit construction for this 
model of the type provided by Eq. (5.1), et seq., for 
the random coupling model. Consequently, we have no 
proof of realizability. As we shall see, however, examina­
tion of the dependence of G(w) on a, in analogy to Sec. 
6, suggests that the model is realizable. 

Since the present model retains an infinite subset of 
terms in Eq. (4.23), it does not directly yield a closed 
equation for G(#). However, we can obtain a closed 
system [Eqs. (7.6) and (7.17)J by considering simul­
taneously the first two equations of an hierarchy analo­
gous to Eq. (2.11). Let 

H (t)= L~<H a-M,a(t)= dG(t)/ dt. 

From Eq. (4.6) we find 
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where 
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Since Ga.a(t) is statistically sharp (M ~ 00), it follows 
from previous relations that the first term on the 
right-hand side of Eq. (7.1) may be rewritten 
-C2;1{b2)G(t). Hence, when C2;1= 1, we have the 
equations 

dG(t)/dt=H(t), G(O)= 1, 
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By Eq. (4.23) we have 
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An analogous expansion for J(t) may be found by 
analysis very similar to that which leads to Eq. (4.23). 
The result is 

00 J 

J=L L (-1)nC2n;p(b2)nG(*G)2n-2, (7.5) 
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where L J is defined as follows: Construct a diagram 
part as shown in Fig. 9. Call it the fixed part. [The two 
vertices correspond to the two tP factors which appear 
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explicitly in Eq. (7.2).J The summation L J then is 
over every closed diagram, constructed by combining 
two or more vertices with the fixed part, that contains 
no part, wholly external to the fixed part, which is 
connected to the rest of the diagram by only solid lines. 
The three simplest diagrams included are shown in Fig. 
10. It will be noted that L J contains both reducible and 
irreducible diagrams in the sense of Sec. 4. The reducible 
diagrams all resemble Fig. toea) in that the associated 
C is the product of just two irreducible C's. 

Let us denote by Fig. 11 (a) the totality of possible 
diagram parts, with the two solid and single dashed 
external lines shown, that can be transformed into a 
single vertex by repeated contractions as shown in 
Fig. 8(a). Let us call this structure a consolidated 
vertex part. Then we may represent the entire class of 
irreducible diagrams which contribute to H(t), in the 
present model, by the single consolidated diagram 
shown in Fig. 11(b)Y In a similar fashion, we may 
represent by consolidated diagrams all the contributions 
to 1 (t) in the present modeU 7a Clearly, two consolidated 
diagrams included are those shown in Figs. 12 (a) and 
12(b). If we independently replace the several con­
solidated vertex parts in these diagrams by all possible 
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/ , 
(a) 
~/ 

/( 
/ "- ® 

(b) (e) 

FIG. 10. The simplest diagrams contributing to J(t). 

diagram parts which they represent, then we obtain 
all the individual contributing diagrams which are con­
tractible into Figs. 10(a) or lOeb), respectively. The 
required contractions do not involve the fixed part. It 
can be seen that all other diagrams contributing in the 
present model are represented by the infinite class of 
consolidated diagrams indicated in Fig. 12(c). These 
diagrams all may be transformed into that for C2;1 by 
sequences of contractions which now involve the fixed 
part. 

As the representation by consolidated diagrams 
suggests, the present model leads to a closed expression 
for let) in terms of H(t) and G(t). It is convenient at 
this point to work with the Laplace transform repre­
sentation. If G(p), H(p), and J(p) denote the respec­
tive transforms of G(t), H(t), and let), then the trans­
forms of Eqs. (7.3)-(7.5) are18 

17 It is easy to see that any diagram which is transformable 
mto the diagram for C2;1 by contraction operations which invo!ve 
the fixed vertex may also be so transformed by an alternative 
sequence of contractions which do not involve this vertex. Thus 
the diagrams included in this consolidated diagram are exhaustive. 
(a) Our "consolidated" diagrams are "irreducible" diagrams in 
the terminology of quantum field theory. 

18 The argument pin G (p), etc., should not be confused with 
the index p in C2n ;p. 

< (a) (b) 

FIG. 11. (a) Consolidated vertex part; (b) the consolidated 
diagram for H(I). 

pG(p)= 1+ H(p), pH(p) = -(b2)G(p)+J(P), (7.6) 

00 irr 

H(p)=L L (-1)nC2n;p(b2)n[G(p)J2n, (7.7) 
n=l p 

00 J 

J(p)=L L (-1)nC2n;p(b2)n[G(p)J2n-l. (7.8) 
n=2 p 

Let us write 

J (p) = Jel ) (p)+J(2) (p)+J(3)(p), (7.9) 

where J (1) (p), J (2) (p), and J (3) (p) are the contributions 
associated with Figs'1'12(a), 12(b), and 12(c), respec­
tively. It can be seen with the aid of the diagrams that 
the terms of Eq. (7.8) included in J (1) (p) are in one-to­
one correspondence to the totality of terms in the 
expansion 

irr 

[H(p)]2= L L (_1)n+mC2n;pC2m;q(b2)n+m 
n,m p,q 

X[G(p)J2n+2m, (7.10) 

which follows from Eq. (7.7). On evaluating the corre­
sponding terms by means of the rule C2n;p= an- 1 (all 
nonvanishing irreducible C's) and then summing, we 
readily find 

J (I) (p) = [G (p) J-l[H (p)]2. (7.11) 

A similar correspondence exists for J (2) (p), and we 
thereby find 

J (2) (p) = a[G (p) J-l[H (p)]2. (7.12) 

The evaluation of J (3) (p) is somewhat more involved. 
Let us write 

00 

J(3)(p)=L J(3.iJ(p), 

1E!' / 1 
/ \ 

(a) 

(e) 
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(7.13) 

FIG. 12. Consolidated diagrams contributing to J(t) in the 
second stochastic model. 
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which follows from Eq. (7.7). On evaluating the corre­
sponding terms by means of the rule C2n;p= an- 1 (all 
nonvanishing irreducible C's) and then summing, we 
readily find 

J (I) (p) = [G (p) J-l[H (p)]2. (7.11) 

A similar correspondence exists for J (2) (p), and we 
thereby find 
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FIG. 12. Consolidated diagrams contributing to J(t) in the 
second stochastic model. 
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FIG. 13. Comparison of G(w) for the random coupling model 
and the second stochastic model (dashed curves) with G(w) for 
the true problem. 

where J(3,i)(p) is the contribution from the ith con­
solidated diagram in the sequence of Fig. 12(c). The 
series for J (3,1) (p) is in one-to-one correspondence with 
that for [H (p) J\ and we find 

J(3,1) (p)= -a2(bZ)-1[G(p)J-3[H (P)]t (7.14) 

by comparing corresponding terms. In a similar fashion, 
comparing the series for J (3,i+1) (p) and [H (p) J2J (3,i) (p), 
we find 

J (3 , i+1) (p) = -a(b2)-I[G (p) J-2[H (p)]2J (3,i) (p), (7.15) 

whence, 

J (3) (p) = J (3,1) (p)-a(bZ)-I[G (p)J-2[H (p)J2J (3) (p). 

(7.16) 

On combining our results (and suppressing the argu­
ment p) we have, finally, 

J = G-IH2{1 + [a/ (1+a(b2)-lG-2H2)J}. (7.17) 

Eliminating Hand J from Eqs. (7.6) and (7.17), we 
obtain 

(b2)2G4+ p( (b2) +apz) G3 
- «b2)+3ap2)G2+3apG-a=0. (7.18) 

The relevant branch of Eq. (7.18) is the one for which 
G(w)=7r-1 Re{G(-iw)} reduces to Eq. (5.6) when 
a=O, and it is easily verified that such a branch exists. 
Let us examine the behavior of G(w) on this branch as 
a is varied. For sufficiently small a, it is plausible to 
assume that our assignment of values to the e's is 
realizable. As we increase a, we may plausibly anticipate 
that G(w) will begin to violate Eq. (2.4), or at least 
will exhibit some discontinuous change in its dependence 
on a, when a critical value is reached for which the e's 
are unrealizable by any assignment of values to the cp's 
consistent with Eq. (4.4). This argument is supported 
by the example of Sec. 6. 

The behavior of Eq. (7.18) is accessible by standard 
techniques for quartic equations. One finds that the 
form of G(w) on the branch of interest varies continu­
ously with a for - t < a < (x;J. Over this range, 

G(O)= (V27rb.)-1[1+(1+4a)!J!, (7.19) 

and, for a>O, G(w) decreases monotonically with 
increase of w2 up to a cutoff frequency given by 

wc2=ta-Is-2(1 +s)2[1- (1-4as)!J(b2), (7.20) 
where 

s= 2- (1 +a-I+ D!)l- (1 +a-I - D!)t, 

D= (1+a-I)2- (1-ja-1)3. 

As a increases, wc
2 increases monotonically. For a< - t, 

G(O) is complex, and we conclude that this gives a 
lower bound to the range of realizability. There appears 
to be no upper bound, at least on the basis of the present 
considerations. 

The properties just listed appear to justify the 
tentative conclusion that the present model is realizable 
for a= 1. It should be emphasized, however, that the 
arguments given do not constitute a proof of realiza­
bility. The latter would require an explicit prescription 
for constructing cp's which yield the model. We have not 
found such a prescription, and, therefore, we regard the 
investigation of the present model as incomplete. 

The function G(w) for a= 1 is compared in Fig. 13 
with Eqs. (5.6) and (2.7). It will be noted that the 
present model gives a close approximation to Eq. (2.7) 
and represents a substantial improvement over the 
random coupling model. 

The apparent realizability of the present model, and 
the significant improvement it gives over the random 
coupling model, suggest that there may be an infinite 
sequence of closed realizable stochastic models in which 
successively broader classes of irreducible e's are given 
the value one and such that G(t) converges rapidly to 
its value in the true problem. If so, the coupling coef­
ficients A [n,r,8] in Eq. (4.2) may exhibit a distribution, 
as functions of n, r, and s, which clusters more and more 
closely about the diagonal values A [n,r.8J=Or."0.,,, as 
one ascends the sequence. Thus we may hope that any 
given dynamical properties of the models should con­
verge in a statistical sense to those of the original 
collection of uncoupled oscillators. The analytical com­
plexity of models higher than the two already described 
is formidable. 

8. DRIVEN RANDOM OSCILLATOR 

Let us add to the right-hand side of Eq. (4.2) a 
forcing term f[nJ (I) which is identically distributed for 
each n, statistically independent for different n, and 
statistically independent of b[rl for all nand r. Let us 
take the initial conditions 

(8.1) 
On writing 

f[n] (t) = 1(0+ fen]' (I), 1(1) == Urn] (t», (8.2) 
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FIG. 13. Comparison of G(w) for the random coupling model 
and the second stochastic model (dashed curves) with G(w) for 
the true problem. 
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and introducing collective forces faU) defined in cor­
respondence to Eq. (3.1), we find 

(M-lfo(t»= jU), (IM-lfo(t)- j(t) 1 2)=O(M-l), (8.3) 

Ua(l»=O, (fa(t)h*(t l»=oa,f3F(t,t' ) (a,eO), 

where 
F(t,t') = U[n]' (t)f[n]'*(t'». 

vVe see that foU) plays a special role: When M -7 oc!, 

the quantity M-!fo(t) = M-l :Enfrn](t) takes the sharp 
value jet). It is easily verified that faCt) depends only 
on the f[n]'(t) if a,eO. 

In place of Eq. (4.1) we now have 

dqa(t)/dt= -iM- i :Ef3 CPa,f3,a-{3b f3q"-f3W+ f,,(t). (8.4) 

Suppose that Eq. (8.4) is formally integrated from to 
and solved by iteration. By arguments similar to those 
which give Eq. (4.7), we find 

(q,,(t»=O (a,eO), (q" (t)q.,/(I'» = 0 (a,e"(). (8.5) 

By Egs. (8.5) and (3.3) we have, for all n, 

(q[n](I»=q(t), qU)=(M-Iqo(t». (8.6) 

It may be verified from a term-by-term examination of 
the iteration solution that the variance of M-!qo(t) 
= M-l :En q[n] (I) is o (M-l). Thus, M-tqo(t) is statis­
tically sharp (M -7 OC!) and may be identified with 
q(t).19 

Because of the special role played by qoU), it is con­
venient to impose, in addition to Eqs. (4.4) and (4.13), 
the condition20 

CPI',A,U= 1 (p. or u= 0). (8.7) 

Then from Eq. (8.4), we obtain (M -7 OC!) 

dq(t)/ dt+iM-I :E/ (b_ f3qfj(t» = jet), (8.8) 

dq,,(t)/dt= -ib"q(t)-iM-l:E/ cP",,,-f3.f3 
X b"-f3qf3 (t)+ faCt) (a,eO), (8.9) 

where :E/ implies that {3=0 is excluded. 
Let us write 

(8.10) 

where, by Eq. (8.6), (q[nl'(I»=O. We shall call q(t) and 
q[nl'(t) the "coherent" and "incoherent" amplitudes, 
respectively. An explicit solution for q(t) is readily 
obtained. From the definition of the response matrix, 
and the statistical independence of the f's and the b's, 
we have 

(qo(t»= L ft (Go,,,(t-s)f,,(s»ds 
a to 

=:E ft (Go,,,(t-s»UOl(s»ds, 
a to 

19 See Appendix A. 
20 Equation (8.7) constitutes a very weak additional constraint 

on the c/>'s, and we anticipate that, provided C2;1 = 1, it will not 
affect the realizability of any given set of values for the C2n; p 

when Jf ~ 00. This is verifiably so for the random coupling model: 
The sums ~~ C2n;p(a, (3, a-(3) are unaffected (.0/[ ~ 00) for either 
0:=0 or «;to. 

whence, by Egs. (8.3), (8.6), and (4.9), we obtain 

q(t)= it G(t-s)j(s)ds. (8.11) 
to 

Consider now the covariance of the incoherent am­
plitude. Let 

Q[n,m] (t,t') = q [n]' (t)q [m]'* (I'), Q".At,t' ) = qa (I)q"( * (I'). 
On using Eqs. (3.3), (8.5), and (8.6), we find 

(Q[n,m] (t,t'» = M-I :Ea' exp[ -i211'(n-m)a/MJ 
X (Q"." (t,I') )+O(M-l). (8.12) 

Therefore, if (Qa.,,(t,t'» is independent of a (a,eO), we 
have (M -7 OC!) 

(Q[n.m] (t,t'»= on,mQ(I,I'), 

Q(t,I') = (Q",,,(t,t'» (a ,eO). 
(8.13) 

Let us assume hereafter that Eg. (8.13) holds. As we 
shall see shortly, this will be the case when Egs. (4.13) 
and (8.7) are satisfied. 

An important statistical property is 

(b{3b_f3' .. bl'b_I'Q",,, (I,t'»- (b2) • •• (b2)Q(t,t') = o (M-I) , 
(a,eO, lal,e 1{31,e .. ·,e 1p.J)· (8.14) 

For the case of uncoupled oscillators (all cP's= 1) this 
follows directly from Eq. (3.1) and the statistical inde­
pendence of b[n]' q[n] (t) and b[r]' q[r] (t) for n,er. In the 
general case, it may be verified for each term of the 
iteration expansion of the left side of Eq. (8.14).19 

From Eq. (8.9) we have 

aQ(t,t')/ at=s(t,t')+S C(t,t')+SF(t,t' ), (8.15) 
where 

S(t,I') =:E/ (S"."-f3,f3(I,t'» (a,eO), 

S"'''-i3,i3(t,t' ) = -iM-lcp"."_f3.fjb"_i3q/3(t)q,, *(t'), 

Sc(I,t') = -i(baqa*(t'»q(t) (a,eO), 

SF (t,I') = (q,,* (t')f" (t» (a,eO). 

(8.16) 

(8.17) 

(8.18) 

Our notation anticipates the fact that the expressions 
given for S(I,I'), Se(t,I'), and SF(I,/') are individually 
independent of a. It should be noted that the similar 
equation for aQ(t,II)/at' is redundant with Eq. (8.15) 
because of the property 

Q(t,t') = Q*(t',t), (8.19) 

which follows from the definition of Q(ti). 
The quantity SF (t,t') is readily evaluated by an argu­

ment similar to that which gave Eq. (8.11). We have 

.' (q,,*(t')f,,(t»=L: f (G",l(t'-S»(h*(s)f,,(t»ds, 
. i3 to 

whence 
t' 

SF(t,t')=i G*(t'-s)F(t,s)ds. (8.20) 
to 

The evaluation of (S","-i3.i3(t,t'» parallels that of 
(H a-i3.i3."Ct» in Sec. 4. We expand q{3(t) and qa *(t' ) by 
iteration of the integrated form of Eq. (8.9), leaving 
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q(t) (which is known) explicitly in the expansion. Then 
we average and note the regularities imposed by the 
sum rule for indices and the statistical properties of the 
b's and the 1's. The expansion for qa *(t') involves 
factors ¢*. If we express these as ¢ factors by Eq. (4.4), 
we are led, eventually, to the irreducible diagram 
expansion 

(S a.a-i3,i3(t,t'» 
C(J irr 

=M-l L L C2n;p(a, a-{3, (3)~2n;p(t,t') (8.21) 
n~l p 

(a, (3~0, lal ~ 1{31 ~ la-{3I), 

where the 6n;p(t,t') are independent of a and (3. From 
this we obtain21 

00 irr 

S(t,t') = L L C2n;p~2n;p(t,t'). (8.22) 
n~l p 

The ~2n;p(t,/') may be determined by the variational 
method used for the S"2n;p(t) in Sec. 4. For variations 
which leave the C2n ;p unchanged, we have, in corre­
spondence to Eq. (4.16), 

Do(S a.a-i3.fj(t,t'» 

irr 

=M-l L ~ ~2n;p(t,t')DoC2n;p(a, a-{3, (3). (8.23) 
n p 

The variation Eq. (4.17), with the notation change 
{3 -'> a- (3, produces perturbation terms on the right­
hand sides of the equations of motion for qa*(t') and 
qfj(t). In correspondence to Eq. (4.19), we find (to 
order M-l) 

I' 

Doqa*(t')=i Ga,a*(t'-S) 
to 

(8.24) 

Then (to order M-l) we find, noting 

Do(S a.a-M(t,t'» 

= M-1DoC2; l(a, a-{3, (3) 

x[f:' (Ga,a * (t'-s)ba-fjb,3-aqf3(t)qfj*(s»ds 

-Lt

(Gfj,fj(t-S)ba_i3bfj_aqa*(t')qa(s»ds 1 (8.25) 

21 The sums over'" products which occur in the present case 
involve 2;' rather than the unrestricted summation by which the 
C2n;p are defined in Sec. 4. This does not alter the values of the 
sums in the limit ill -> 00, however. 

By using Eq. (8.14) and the sharpness of Ga,a and Gi3 ,i3 
to reduce the averages in the limit M -'> 00, we have, 
finally, 

~2;1(t,t') = (b2>[f:' G*(t'-s)Q(t,s)ds 

- .( G(t-s)Q*(t',s)ds 1 (8.26) 

It is noteworthy that this expression depends on the 
driving forces only implicitly, through their effect on 
Q(t,t'). 

The higher ~2n;p(t,t') may be found by introducing 
more general variations. The result is that ~2n;p consists 
of a sum of terms each of which involves a (2n-1)-fold 
time integration over a product of 2n-1 factors G or G*, 
one Q or Q* factor, and n factors (b2). 

We have finally to evaluate Se(t,I'). It can be shown 
from the iteration solution of Eq. (8.9) that (b"q,,*(I'», 
like (Q",,, (t,t'», has an irreducible diagram expansion 
and is independent of a (a~O). From the latter fact 
we have 

Hence, in the limit M -'> 00 we obtain from Eq. (8.8) 
the result 

Se(/,I') = - q(t)[dq*(t')/ dt'- J*(t')]' (8.27) 

Let us now specialize to the random coupling model. 
By Eq. (5.3), we then have20 

S(I,/') = b 1 (1,1'). (8.28) 

Equations (8.15), (8.19), (8.20), (8.26), (8.27), and 
(8.28) now permit the determination of Q(t,t'). 

Twice the real part of Eq. (8.15) for t= [' is the equa­
tion for the rate of change of the mean intensity Q(I,t) 
of the incoherent oscillation. The quantities 

2 Re{Se(t,t)} and 2 Re{SF(t,t)} 

represent contributions to dQU,t)/dt from interaction 
with the coherent oscillation and incoherent driving 
forces respectively. From Eqs. (8.26) and (8.28) we have 

Re{S(t,t)} =0. (8.29) 

Thus, using Eq. (8.27), we verify the conservation of 
total intensity, 

(d/ dt)[Q(t,t)+q(t)q*(/) ] = 0, (8.30) 

when all the driving forces vanish. This consistency 
property, and Eq. (8.29) itself, are assured in advance 
because our equations constitute the exact description 
of a model for which Eq. (4.4) holds. It is also assured 
that the solution Q(t,t') of our model equations obeys 
all the realizability conditions to which covariances are 
subject.22 

22 One such condition is iQ(t,t') i'::;Q(t,t)Q(t',t'). 
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Do(S a.a-M(t,t'» 

= M-1DoC2; l(a, a-{3, (3) 

x[f:' (Ga,a * (t'-s)ba-fjb,3-aqf3(t)qfj*(s»ds 

-Lt

(Gfj,fj(t-S)ba_i3bfj_aqa*(t')qa(s»ds 1 (8.25) 

21 The sums over'" products which occur in the present case 
involve 2;' rather than the unrestricted summation by which the 
C2n;p are defined in Sec. 4. This does not alter the values of the 
sums in the limit ill -> 00, however. 

By using Eq. (8.14) and the sharpness of Ga,a and Gi3 ,i3 
to reduce the averages in the limit M -'> 00, we have, 
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~2;1(t,t') = (b2>[f:' G*(t'-s)Q(t,s)ds 

- .( G(t-s)Q*(t',s)ds 1 (8.26) 

It is noteworthy that this expression depends on the 
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more general variations. The result is that ~2n;p consists 
of a sum of terms each of which involves a (2n-1)-fold 
time integration over a product of 2n-1 factors G or G*, 
one Q or Q* factor, and n factors (b2). 

We have finally to evaluate Se(t,I'). It can be shown 
from the iteration solution of Eq. (8.9) that (b"q,,*(I'», 
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Let us now specialize to the random coupling model. 
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tion for the rate of change of the mean intensity Q(I,t) 
of the incoherent oscillation. The quantities 
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forces respectively. From Eqs. (8.26) and (8.28) we have 
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because our equations constitute the exact description 
of a model for which Eq. (4.4) holds. It is also assured 
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subject.22 

22 One such condition is iQ(t,t') i'::;Q(t,t)Q(t',t'). 
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The simplest solution of Eq. (8.15) for the random 
coupling model results from taking forces which vanish 
except for impulses at 1= to such that Q(lo,lo) = 1, 
g(lo) = O. Then it is easily seen from Eq. (8.26), and 
the property G(t)=G*(_I),23 that Eq. (8.15) becomes 
identical with Eq. (5.4) (for I, I'> 10) under the sub-
stitution 

Q(t,t')=G(t-I'). (8.31) 

Thus Eq. (8.31) is the solution for random shock exci­
tation, as is r~quired for consistency. In general, Q(I,I') 
and Get-I') do not have the same form. 

9. NON-GAUSSIAN FREQUENCY DISTRIBUTION 

\Ne shall now describe briefly the generalizations 
required when the distribution of b[nJ is non-Gaussian. 
The case (b[nJ)~O can be treated by methods similar 
to those used for (j[nJ)~O in Sec. 8. But it is simpler 
to maintain the condition (b[nJ)=O and instead replace 
Eq. (8.4) by 

(d/dt+iw+v)qa(t) 
+iM-! L~ cf>a.~,a-~b~qa-~(t)= ja(t), (9.1) 

where w is the (real) mean frequency and we have also 
included a real damping factor v. It is easy to see that 
this generalization implies only minor changes in our 
treatment if b[nJ remains Gaussian. The factor fn/2n! 
in the iteration series Eq. (4.14) is replaced by 
G(O)(*G(O))2n, where 

G(O) (I) = exp[ - (iw+ v)/]. (9.2) 

However, the irreducible diagram expansions for H(t) 
and SU,!'), and the expressions for the f2n;p(t) and the 
~2n;p(t,i'), are unchanged in form. The effect of w, v~O 
is implicitly expressed by the changed values of the 
functions G and Q which appear in these expressions. 
The only further changes in Sees. 2-8 are the obvious 
replacements 

d/dt ----'> (d/dt+iw+v) and a/al ----'> (a/al+iw+v) 

where appropriate. 
Now let us consider the general (non-Gaussian) case 

where the b[nJ are identically distributed (with zero 
mean) for all n and statistically independent for dif­
ferent n. It is easy to verify from Eqs. (3.1) and (3.2) 
that Eq. (3.8) remains valid. In place of Eq. (3.10), we 
find 

(ba) = 0, (bab~) = aa+~(b2), 
(b ab{3b'Y) = aa+~+'YM-I(b3), 

(bab~b'Yb,)= (aa+{3aH.+aa+'Ya{3+,+aa+,a~+'Y)(b2)2 (9.3) 
+aa+~+'Y+,M-l (b 4)- 3(b2)2) , 

In general we find (M ----'> 00) that all moments of the 
b", with indices equal and opposite in pairs depend only 

23 This property of Eq. (5.5) is directly implied by Eq. (2.4). 

(a) (b) (e) 

FIG. 14. Diagrams for simple non-Gaussian contributions to G(t). 

on (b2
) and have the same values as for a Gaussian dis­

tribution of b[nJ with this variance. Moments for which 
the indices do not pair (we shall call them skew mo­
ments) have values which depend on the cumulants of 
the b[nJ distribution; they tend individually to zero as 
M ----'> 00 .24 

The presence of skew moments results in new classes 
of terms in Eq. (4.11) and, consequently, in Eq. (4.23). 
The simplest new term in Eq. (4.23) is 

(9.4) 
where 

D3;1 =M-2 L{3,'Y cf>""{3.,,,-f3cf>a-~''Y,a-{3-'Ycf>a-{3-'Y,-~- 'Y,a' (9.5) 

It may be represented by Fig. 14(a). The further terms 
represented by Figs. 14(b) and 14(c) are proportional 
to (b 4)-3(b2)2 and to (b2)(b3), respectively. 

It is possible to generalize our sequence of models so 
that closed equations are produced which systematically 
include more and more of the information expressed by 
the cumulants of the b distribution. We shall not 
attempt this here. However, it is important to note 
that the equations for the random coupling model are 
identical to those already given no matter what the 
(zero-mean) b distribution may be. It is clear that D 3;1 

vanishes for this model (M ----'> 00), and it can be seen 
that all the higher new terms in Eq. (4.23) vanish also. 
The statistical properties of the random coupling model 
thus depend only on the variance (b2). On recalling Eq. 
(2.3), which is exact for the original uncoupled oscil­
lators, we see that in certain respects the random 
coupling model actually will provide a better approxi­
mation for distributions of b which resemble Eq. (5.6) 
in form than for a Gaussian distribution. 

In the physical analogs to the random oscillator which 
are our eventual interest, the distribution of the sto­
chastic quantity corresponding to b may itself be deter­
mined by dynamical processes. In this case there may 
exist an alternative to the generalized treatment we 
have mentioned. It may be physically reasonable to as­
sume Gaussian initial conditions for the quantities corre­
sponding to band q. If the dynamical equations for 
these quantities are then treated as a simultaneous set, 
the non-Gaussian diagrams will not arise in any of the 
relevant sequence of models. We shall give an illus­
tration at the end of Sec. 11. 

24 However, their number increases correspondingly so that 
those sums over individual skew moments which contribute to 
physical quantities remain finite in the limit. 
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10. PARTICLE IN A RANDOM POTENTIAL 

Let the Schrodinger equation for a particle be25 

(aj at- i\P)1/;(x,t) = - iv(x)1/; (x,t), (10.1) 

where vex) is a real potential which is statistically dis­
tributed over an infinite ensemble of realizations of the 
system. This problem is an exact homolog to the ran­
dom oscillator with respect to treatment by stochastic 
models.26 Let us consider a collection of M systems such 
that the individual potentials V[n] (x) are identically 
distributed for all n and are statistically independent 
for different n. Let 1/;[n] (x,t) be the Schrodinger function 
for the nth system. Then we may define the collective 
quantities 1/;",(x,t) and v",(x) in correspondence to Eq. 
(3.1), and consider the model equations 

(ajat-i'V2)1/;",(x,t) = -iM-t L~ cJ>",.~.",-~ 
X v~(x)1/;",_~(x,t). (10.2) 

The cJ>a.f3."'-~ will be identical quantities for correspond­
ing models in the present problem and the random 
oscillator problem. 

The condition Eq. (4.4) serves to maintain hermi­
ticity in the present case. It is easily verified from Eqs. 
(4.4) and (10.2) that the total probability, 

and the total energy, 

f [ -~ 1/;[n]*'V21/;[n]+ n7.8 1/;[n]* A [n.r.s]v[r]1/;[.]]d3x, 

where A[n.r.s] is defined by Eq. (4.3), are conserved. 
However, the individual quantities f 11/;[n]12d3X are not 
constants of motion, in general. The systems in the 
collection exchange particles as well as energy. 

Let us now take the case where V[n] (x) has a multi­
variate Gaussian distribution. This implies that all 
odd-order moments vanish and that all even-order 
moments are expressible in terms of the covariance 
V(x,xl)=(V[n](X)V[n](X'». In the collective repre­
sentation we have 

(Va(X)V~(X') )=o"'+f3 V (x,x'I ), 

(v", (x)Vf3(x' )v'Y (x")v. (XIII» 
= oa+flo'Y+' V (x, x') V (x" ,X"I) 

+Oa+'tOfl+' V (x, x") V (x' ,X"I) 
+O",+.Ofl+'Y V(X,X"') V (x',x"), 

(10.3) 

The analog of Eq. (3.8) holds, of course, whatever the 
distribution. 

25~e take units such that 1i=1 and 2m=1, where m is the 
partIcle mass. 

26 The two problems may be regarded as formally identical if 
band q are interpreted as vectors in a function space and a cor­
respondence is established between d/dt and a/at-iV'. 

Let us define the Green's function G[n.m](x,ti x',t' ) 
as the solution (for all t) of the model equation for 
1/;[n] (x,t) under the initial condition 

1/;[T] (x,tl)=or.mO(X-X' ) (all r), 

and make a corresponding definition for Ga. 'Y (x,t I x' ,t'). 
Then, in correspondence to the analysis in Sec. 4, we 
find, when Eq. (4.13) is satisfied, 

(aj at-i'V .,2)G(x,t I x',t' ) 

00 irr 

=L L (_1)nC2n;pt2n;p(x,tlx',t'), (10.4) 

where 

n=l p 

G(x,t'l x',t') =o(x- x'), 

(G[n.m] (x,t I x',t'»= On.mG(X,t! x',t' ), 

(Ga.'Y(x,t I x',t'»= oa."IG(X,t I x',t'), 

and t 2n; p (x,! I x' ,t') is the homolog of t 2n; p (t - I'). 

(10.5) 

The functions t2n;p(x,tlx',[I) may be determined by 
the variational method used in Sec. 4. The variation 
Eq. (4.17) produces, in correspondence to Eq. (4.19), 
the variation 

AG"'_tJ.a(X,t! x',t' ) 

= f.t ds f d3yGa_fl.a_f3(X,t! y,s) 

X[ -iM-!AcJ>a-#.-f3.aV-fl(y)Ga.a(y,S! x',t' )], (10.6) 

and we are led, thereby, to the result 

t2; l(X,t j x',t') 

=f,t dsf d3yV(x,y)G(x,tjy,s)G(y,sjxl ,t' ), (10.7) 

which corresponds to Eq. (4.21). This result depends on 
the fact that Ga.a(x,t I x',t' ) is statistically sharp 
(M -+ 00 ), which may be demonstrated in the same way 
as for Ga .« (t) of Sec. 4. 

The result for t4;3(X,t I X',!') is 

t4;3(X,tj x',t') 

= f,' dSlf:' dS2!:' dS3j j J d3Yld3Y2d3Y3 

X V(X,y2) V(YlS3)G(X,t j Yl,Sl)G(Yl,Sll Y2,S2) 

XG(Y2,S21 Y3,S3)G(Ya,Sa! x',t'). (10.8) 

The structure of expressions (10.7) and (10.8) may be 
represented, as in Fig. 15, by an appropriate labeling 
of the vertices in the diagrams for C2;l and C4;3. The 
expressions for all the higher r 2n; p (x,t I x' ,t') may be 
written down by analogy from the diagrams for the 
corresponding irreducible C 2n; p. 
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In the random coupling model, where C2;1= 1 and 
all the higher irreducible C2n ;p vanish, Eq. (lOA) 
becomes 

(a/at-iV'x~)G(x,tl x',t') 

= - f,t ds I d3yV(x,y)G(x,tl y,s)G(y,sl x',t'), (10.9) 

G(x,t'l x',t') =o(x- x'). 

It should be pointed out that this result is independent 
of the assumption that the potential has a Gaussian 
distribution, provided that (V[n](X)=O (d. Sec. 9).21 

We are assured that the solutions of Eq. (10.9) will 
exhibit certain consistency properties because this is 
an exact equation for a realizable model. In particular, 
if Eq. (10.2) is transformed into the momentum repre­
sentation, it follows from a straightforward extension 
of the arguments given in connection with Eq. (5.7) 
that G(x,tl x',t') satisfies a basic spectral condition. The 
latter takes its simplest form for the homogeneous case 
V(x,xl)=V(X-x'), in which G(x,tlx',t' ) can depend 
only on x- x' and t- t'. If we write 

Gk(t-t' )= jd3YG(x,t lxl,tl) exp(-ik·y) 

(y=x-x'), (10.10) 

Gk(W) = (211-)-II'" dsGk(s) exp(iws), 
-00 

then the spectral condition is 

Gk(w) = I Gk(w) I· (10.11) 

[We may note that Gk(t-t' ) is the diagonal response 
function for the amplitude in the mode k.] Equation 
(10.11) implies the reciprocity relation 

G(x,t I x',t') = G*(x' ,til x,!). (10.12) 

When V(x,xl)=V(X-x' ), Eq. (10.9) has the trans­
form 

(ajat+ik2)Gk(t) = - It ds j d3k'Vk_k,Gk,(t-S)Gk(S), 

where 
Gk (0) = 1, (10.13) 

It is possible to solve Eq. (10.13) easily for very high k 
(the WKBJ limit). This is of particular interest because 
it is well known that the perturbation approach breaks 
down in this limit. Let us take k sufficiently high that 
V k- k' = 0, unless I k - k' I «k. Then it is plausible that 
we may replace Gk, (t-s) by Gk(t-s) in Eq. (10.13) and 

27 When the laUer condition is not fulfilled, an additional term 
if)(x)G(x,t I x',t') appt>ars on the left-hand side of Eq. (10.4), where 
f!(x) is the mean potential, and V(x,y) then is defined in terms of 
the zero-mean part of the potential. 
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thereby obtain28 

(aj at+ik2)Gk(t) = - (v2 ) 1 t Gk(t- s)Gk(s)ds, 

where 
Gk (O)=l, (10.14) 

Equation (10.14) becomes identical with Eq. (5.4) 
under the transformation 

Consequently, we have 

Gk(w) = (1rV.)-{ 1- (W::2Yr 
=0 

(lw-k2
1 ~2v.), 

(10.15) 
(lw-k2

1 >21',), 

where v.= (v2)i. This correspondence between the 
WKBJ limit and the random oscillator is not confined 
to the random coupling model. If Eq. (10.4) is written 
in the k representation in this limit, and the previous. 
transformation is made, the reSUlting equation is iden­
tical with Eq. (4.23). A particular consequence is that 
the WKBJ solution to the true problem (all cp's= 1) is. 

Gk(w)= (21r(v2»)-! exp[ -Hw-k2)2j(V2)], (10.16) 

in correspondence to Eq. (2.7). This result states that 
for sharp kinetic energy (sharp k) the total energy dis­
tribution follows the Gaussian potential energy dis­
tribution. Considered as an approximation to Eq_ 
(10.16), the random coupling result (10_15) exhibits. 
the qualitative physical fact that sharp momentum 
states are not sharp energy states. The quantitative 
form of Eq. (10.15) suggests that the random coupling 
model may represent a better approximation to the true 
problem if the true potential distribution has a clipped 
rather than a Gaussian form (d. Sec. 9). It should be 
noted that the cumulant-discard approximation scheme, 
when applied in the WKBJ limit, yields expressions for 
exp(ik2t)Gk (t) which are identical in form to Eq. (2.13). 
This implies discrete spectra Gk(w), which is unphysical 
compared to the random coupling result. 

The general correspondence between the WKBJ limit 
and the random oscillator includes, of course, the second 
stochastic model, discussed in Sec. 7. The WKBJ 

28 This procedure can be justified a posteriwi. 
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results for the two stochastic models and for the true 
problem in the Gaussian case are given by Fig. 13, if 
the horizon tal and vertical axes are relabeled (w - k2) I v. 
and 1I"v,C k (w), respectively. Away from the WKB] 
limit, the analysis of the second model is considerably 
more difficult than for the random oscillator, although 
the same in principle. The equations are not reducible 
to algebraic form, and the analogs to the inverses 
[G(p)]-l and W)-l, which appeared in Sec. 7, must be 
defined by integral equations. 

Let us assume that the Schrodinger fields are switched 
on at t=to in such a way that the 1/I[n] (x,to) are statis­
tically independent and identically distributed for all n 
and statistically independent of V[r] (x) for all r. Let 

1/1 [n] (x,t) = /;(x,t) +1/1 [nl' (x,t), 

/;(x,/) = <1/I[n] (x,t». 
(10.17) 

We shall call /;(x,t) the coherent wave and 1/I[nl' (x,t) the 
incoherent wave. The evolution of the coherent am­
plitude and the incoherent covariance may be deter­
mined by direct correspondence to the analysis in Sec. 8. 

Noting that our switch-on is equivalent to the action 
of impUlsive sources f£n] (x,t) =1/I[n] (x,to)o(t- to), we 
have, in correspondence to Eq. (8.11), 

/;(x,t) = f G(x,t I y,to)/;(y,tO)d3y. (10.18) 

When the potential is statistically homogeneous, Eq. 
(10.18) has the transform 

/;k (t) = Gk (t- to)/;k(tO), 
where 

(10.19) 

In this case the various momentum modes of the 
coherent wave evolve independently. As our WKB] 
limit results illustrate, Gk(t) has a continuous spectrum 
and, therefore, vanishes as t ~ OCJ. Consequently, the 
coherent wave eventually is extinguished by its inter­
action with the random potential. 

In direct correspondence to the results obtained in 
Sec. 8, we have 

<1/1 [n]' (X,t)1/I[m]'*(X',t'»= On.m'I!(x,l; x',t'), 

<1/Ia(X,t)1/I'/(x',t'» = Oa.'Y'I!(x,t; x',I') (10.20) 

(a ~O). 

and 

ScCx,t; x',I') = - /;(x,t) cal at' +iV' z,2)/;*Cx',I'). (10.24) 

There is no term corresponding to SF(t,t' ) because we 
have not admitted sources for I> to. 

The functions ~2n;p(X,t; X',!'), which are homologous 
to the ~2n;p(t,t') in Eq. (8.22), may be determined by 
employing our variational procedure and noting the 
statistical property 

<Vp(XI)V_ P(XI') ... VI' (xr)v_1' (xr')1/I a (y,t)1/Ia * (y/,t'» 
= V (Xl,Xl')· .. V (Xr,X/)'I!(y,t; y',t')+O(M-I) (10.25) 

(a~O, lal = 1f31 ~ ... ~ 1",1), 
which corresponds to Eq. (8.14). (Here Xl, XI" etc., are 
arbitrary position vectors.) In particular, we find 

~2; I (x,t; x' ,t') 

= f d3YV(X,y)L(' dsG*(x',t'l y,s)'I!(x,t; y,s) 

-it dsG(x,tl y,S)\[I*(X/,t'; y,s) 1 (10.26) 

For the random coupling model, 

S(x,t; x',t') = ~2; I(X,t; x/,t'), (10.27) 

and we have a closed set of equations which determine 
'I!(x,!; x',t') when the initial functions 'I!(x,to; x',to) and 
/;(x,to) are given. As was the case for G(x,tix',t' ), 
certain important consistency properties necessarily 
are exhibited by the solution 'I! (x,t ; x/,l') for any realiz­
able model. In particular, we are assured that 'I! (x,t ; x',t') 
satisfies all the realizability conditions to which a 
covariance is subject. In the homogeneous case, where 
the spatial dependence of \[I(x,t; x',t') involves only 
x- x', we must have 

(10.28) 
where 

'I!k(t,t') = (211")-3 f 'I! (x,t ; x' ,I') exp(-ik· y)d3y 

(y=x-x'). 

When to ~- OCJ and a statistically stationary state has 
been set up, so that 'I!k(t,t') ='I!k(t-t' ), we have, further, 

~k(W)= l~k(W) I, (10.29) 
where \It(x,t; x',L') has the symmetry property where 

~k(W)= (211")-lj"" \[Ik(t) exp(iwt)dt. \It(x,t; x',t') = 'I!*(x',t' ; x,t), (10.21) 
and obeys 

(a/at-iV'x2)\lt(x,t; x',t') 
=S(x,t; x',t')+Scex,t; x',I'), (10.22) 

with 
n irr 

S(x,t; x',t' ) = L L C2n;p~2n;p(X,t; x',t'), (10.23) 
n=-l p 

-00 

In contrast, cumulant-discard approximations similar 
to those of Sec. 2 may lead, in the present problem, to 
negative occupation probabilities, \[Ik(t,t) <0, for phys­
ically admissible initial conditions. Such behavior is 
easily verified in simpler, but analogous, dynamical 
systems. 
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Twice the real part of Eq. (10.22) for x',I' = x,t 
represents the continuity equation for the ensemble 
mean of the quantum-mechanical probability of finding 
a particle. The left-hand side is the quantum-mechanical 
equivalent of the substantial derivative of the mean 
probability density 'IF(x,t; x,!) in the incoherent wave. 
The corresponding quantity for the coherent wave is 
-2 Re{Sc(x,t; x,t)}. It is clear from Eqs. (10.27) and 
(10.26) that Re{S(x,t; x,f)} vanishes. Consequently, 
the continuity equation simply states that a particle 
enters the incoherent wave as it leaves the coherent 
wave. 

The vanishing of Re{S(x,t; x,I)} expresses the fact 
that the direct effect of the potential on the particles is 
to change their momentum rather than their position. 
To illustrate this, let us take "'(x,t) = 0 and assume that 
the potential and the incoherent wave are statistically 
homogeneous. Then from the Fourier transforms of 
Eqs. (10.22), (10.27), and (10.26), we obtain 

d'lF k (f,t) / dt 

=2 Re ( ds f d3k'Vk_k{Gk(S-t)'lF k,(t,s) Jto 
-Gdt-s)'lFk(s,t)], (10.30) 

after noting Eqs. (10.12) and (10.21). The quantity 
'lFk(t,t) is the mean probability density for finding a 
particle with momentum k. The right side of Eq. (10.30), 
therefore, is the rate of transfer of particles to this 
momentum from all other momenta k'. It is easily 
verified from Eq. (10.30) that J'lFk(t,t)d3k is a constant 
of motion. 

Suppose that the fields have been s~itched on at 
10= - 00 in such fashion that a stationary state exists 
at time t. By using Eqs. (10.11) and (10.29), the right­
hand side of Eq. (10.30) may be rewritten so that we 
have 

0= d'lF k(t,t)/dt 

= f'" dw J d3k'Vk_k{G\(W)~k'(W)- Gk'(W)~k(W)]. 
-CfJ (10.31) 

We note that the right-hand side of Eq. (10.31) is the 
difference of two terms each of which is positive.29 The 
first represents an input of particles to mode k from 
other modes k' and the second represents an output to 
these other modes. If the excitation of mode k only 
were to be slowly increased by some outside agency, it 
is clear that the output term would increase in mag­
nitude while the input term would be initially unaffected. 
Thus, the random coupling model exhibits a plausible 
tendency to restore statistical equilibrium. 

It will be noted that Eq. (10.31) is satisfied in general 

29 F k necessarily is real and nonnegative. 

if 

(10.32) 

where jew) is a function independent of k. Now it can 
be seen from their definitions that Gk(w) is proportional 
to the density of eigenstates of energy w available to a 
particle of momentum k, while ~k(W) is proportional 
to the occupation of such states by particles of this 
momentum. Thus Eq. (10.32) has the usual form of a 
single-particle equilibrium distribution law if jew) is a 
function of w/O (0= temperature) appropriate to the 
statistics of the particle. 30 In a later paper, we shall 
deduce distribution laws of this form directly from a 
condition of statistical equilibrium under small per­
turbations in the coupling among systems in a col­
lection, without appealing to probability distributions 
in the space of the eigenstates (such as the grand 
canonical distribution). 

11. TURBULENCE DYNAMICS 

The problem of turbulence dynamics serves to illus­
trate the application of our methods to equations of 
motion which are nonlinear in the dynamic variables. 
In order to keep the formalism as simple as possible, 
we shall work here with the one-dimensional scalar 
analog to the N avier-Stokes equation proposed by 
Burgers. 31 The treatment of the Navier-Stokes equation 
for an incompressible fluid, which we shall discuss 
briefly, does not differ in essentials. 

Burgers' equation is 

(
a a2

) au (x,t) 1 a 
--v- u(x,t) = -u(x,t)--= -- -[u(x,t)]2. 
at ax2 ax 2 ax 

(11.1) 

The function u(x,t) may be interpreted as the velocity 
of an infinitely compressible fluid, of constant kinematic 
viscosity v, executing one-dimensional motion. If )1=0, 
the quantities 

J'" u(x,t)dx, t J'" [u(x,t)]2dx 
-00 -00 

are both constants of motion. We shall call them 
"momentum" and "energy," respectively. [This is not 
their accurate meaning, however, on the basis of the 
interpretation just suggested for u(x,t).] 

If an infinitesimal forcing term ~j(x,t) is added to the 
right side of Eq. (11.1) for t>to, the response is 

i
t 00 

ou(x,t) = dsJ dyG[ ] (x,t/y,s)oj(y,s), 
to _00 

where the infinitesimal Green's function G[ ] (x,t / x',t') 

30 We may note that fd3kGk (-i6-I )=G(x, -i6-l lx,O) is the 
mean one-particle partition function per unit volume. 

31 J. M. Burgers, Advances in App\. Mech. 1, 171 (1948). 
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Thus, the random coupling model exhibits a plausible 
tendency to restore statistical equilibrium. 
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29 F k necessarily is real and nonnegative. 

if 

(10.32) 

where jew) is a function independent of k. Now it can 
be seen from their definitions that Gk(w) is proportional 
to the density of eigenstates of energy w available to a 
particle of momentum k, while ~k(W) is proportional 
to the occupation of such states by particles of this 
momentum. Thus Eq. (10.32) has the usual form of a 
single-particle equilibrium distribution law if jew) is a 
function of w/O (0= temperature) appropriate to the 
statistics of the particle. 30 In a later paper, we shall 
deduce distribution laws of this form directly from a 
condition of statistical equilibrium under small per­
turbations in the coupling among systems in a col­
lection, without appealing to probability distributions 
in the space of the eigenstates (such as the grand 
canonical distribution). 

11. TURBULENCE DYNAMICS 

The problem of turbulence dynamics serves to illus­
trate the application of our methods to equations of 
motion which are nonlinear in the dynamic variables. 
In order to keep the formalism as simple as possible, 
we shall work here with the one-dimensional scalar 
analog to the N avier-Stokes equation proposed by 
Burgers. 31 The treatment of the Navier-Stokes equation 
for an incompressible fluid, which we shall discuss 
briefly, does not differ in essentials. 

Burgers' equation is 

(
a a2

) au (x,t) 1 a 
--v- u(x,t) = -u(x,t)--= -- -[u(x,t)]2. 
at ax2 ax 2 ax 

(11.1) 

The function u(x,t) may be interpreted as the velocity 
of an infinitely compressible fluid, of constant kinematic 
viscosity v, executing one-dimensional motion. If )1=0, 
the quantities 

J'" u(x,t)dx, t J'" [u(x,t)]2dx 
-00 -00 

are both constants of motion. We shall call them 
"momentum" and "energy," respectively. [This is not 
their accurate meaning, however, on the basis of the 
interpretation just suggested for u(x,t).] 

If an infinitesimal forcing term ~j(x,t) is added to the 
right side of Eq. (11.1) for t>to, the response is 

i
t 00 

ou(x,t) = dsJ dyG[ ] (x,t/y,s)oj(y,s), 
to _00 

where the infinitesimal Green's function G[ ] (x,t / x',t') 

30 We may note that fd3kGk (-i6-I )=G(x, -i6-l lx,O) is the 
mean one-particle partition function per unit volume. 

31 J. M. Burgers, Advances in App\. Mech. 1, 171 (1948). 
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obeys 

(
a ( 2

) 
--y-- G[](x,tlx',t') 
at ax2 

a 
=--[u(x,t)G[ ](x,tlx',t')], 

ax 

G[ ] (x,t' I x',t') =o(x-x'). 

(11.2) 

In correspondence to the procedure followed in Secs. 
4, 8, and 10, let us take a collection of systems with 
velocity fields Urn] (x,t) and Green's functions 

G[n.m] (x,t I x',t') , 

pass to the collective representation, and consider, 
instead of Eqs. (11.1) and (11.2), model equations of 
the form 

a 
= -tM-! L: cp",~,,,_p-[u~(x,t)u,,_~(x,t)], (11.3) 

~ ax 

(
a (2

) 
--y-- G",'Y(x,tlx',t') 
at ax2 

a 
= - M-! L: cp",~,,,_~-[u~(x,t)G"_~''Y(x,tl x',t')], 

~ ax 

G".')'(x,t'l x',t') =o",')'o(x-x'). (11.4) 

As before, the cp's are independent of x and t and the 
same for all ensemble-realizations of the collection. 

We shall impose upon the cp's the three conditions 

cp",~,,,-~= cp",,,-~,~, cp-",-~,-,,+~= cp",~,,,-~*, 

CPa-~,-~,a= CPa,/3,a-/3*' 
(11.5) 

The first is a symmetry convention. It does not restrict 
the dynamics. 32 The second insures that Eq. (11.3) 
preserves the property 

ua(x,t) = U- a *(x,t) 

and, therefore, the reality of the Urn] (x,t). The third 
is identical with Eq. (4.4). It insures that 

t ~ foo [U[n] (x,t)]2dx=t L: foo lu,,(x,t)1 2dx 
_00 a _00 

(0) (b) 

FIG. 16. Vertex representations for the turbulence problem. 

32 We have, in faci, assumed this condition in writing Eq. (11.4). 

is a constant of motion, if v= O. The property 

d foo - U[n](x,t)dx=O 
dt -00 

follows from Eq. (11.3) for any values of the cp's, 
provided the Urn] (x,t) vanish at x= 00. In correspond­
ence to Eq. (8.7) we shall also require 

cp",A,u=l (/J.,AorO'=O). (11.6) 

The additional conditions which the cp's now satisfy 
imply only minor modifications in the diagrammatic 
representation introduced in Sec. 4. Let us associate 
with cp",A,u and CP",A,U* the vertices shown in Figs. 16(a) 
and 16(b), respectively. Then the rules for associating 
diagrams with C2n;p(a, f3, a-(3) and C2n;p are identical 
with those given in Sec. 4, if dashed lines are replaced 
by solid lines everywhere, 33 We shall assume hereafter 
that Eq. (4.13) is satisfied. 

Let us take 

Urn] (x,to) = u(x,tO)+U[n]' (x,to), (11.7) 

where the initial values Urn]' (x,to) are identically dis­
tributed, with zero mean, for each n and statistically 
independent for different n. In correspondence to Eq. 
(3.8), it then follows that the moments of the ua(x,to) 
vanish unless the sum of indices is zero. Now suppose 
that Eq. (11.3) is solved by iteration. From this prop­
erty of the initial value moments, and the combination 
rule for indices in Eq. (11.3), we find 

(u,,(x,t)U/3(x',t')·· ·;=0 (a+f3+'" ~O). (11.8} 

Similarly, the iteration solution of Eq. (11.4) yields 

(G".'Y(x,tlx',t');=O (a~'Y). (11.9} 

It follows immediately from Eq. (11.8) that 

(U[n] (x,t);= (M-tuo(x,t); 

for all n. In correspondence to the similar result cited 
in Sec. 8, it can be shown that M-iuo(x,t) is a sharp 
quantity (M ~ 00). Let us write 

Urn] (x,t) = u(x,t)+U[n]' (x,t) , 

u(x,t) = (U[n] (x,t);. 
(11.10) 

We shall call u(x,t) and U[n]'(x,t) the mean and fluctu­
ating fields, respectively. By identifying M-tuo(x,t) 
with u(x,t) in the limit M ~ 00, and noting Eq. (11.6), 
we may now rewrite Eqs. (11.3) and (11.4) in the form 

(
a a2 

) au(x,t) 
--v- u(x,t)+u(x,t)--
at ax2 ax 

a 
= -tM-l L:' -(U" (x,t)u_" (x,t», (11.11) 

" ax 
33 The additional symmetry properties expressed by Eq. (11.5) 

result in an ambiguity in the formal expressions for the C2n ;p given 
by the rules in Sec. 4. There is, however, no ambiguity in value .. 
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(
a (2) a 
--11- ua(x,t)+-[u(x,t)ua(x,t)] 
at ax2 ax 

a 
= -tM-l I:" <Pa,,B,a-r-[U,B (x,t)Ua_1l (x,t)] 

Il ax 
(ar!'O), (11.12) 

(
a iP) a 
-- v-- Ga,,),(x,t l x',t')+-[u(x,t)G",,),(x,tl x',t')] 
at ax2 ax 

a 
= -M-l I:' <Pa,.B,a-.B-[U!1(X,t)G"-Il,')'(x,t I x',l')], 

Il ax 

Ga, ')'(x,t' I x',t') =o",')'o(x-x'), (11.13) 

where I:/ implies that {3=0 is to be omitted and I:/' 
implies that both {3=0 and a-{3=O are to be omitted. 
It should be noted that Eq. (11.13) has the same form 
for ar!'O and a= 0, Equations (11.11) and (11.12) are 
coupled equations which determine the evolution of the 
mean and fluctuating fields. 

Now let us assume that the distribution of the 
initial values Urn]' (x,to) is multivariate Gaussian. It can 
then be shown from the iteration solutions of Eqs. 
(11.12) and (11.13), using arguments similar to those 
in Sees. 4 and 8, that (ua(x,t)u_,,(x',t'» is independent 
of a (ar!'O) and that (G",a(x,tlx',t'» is independent of 
a (all a). Then it follows from Eqs. (11.8) and (11,9) 
that 

(U[n]' (X,t)U[m/ (x',t'» = On,,,,U(X,t; x',t'), 

U (x,t; x',t') = (u a (x,t)u_a(x',t'» 

(G[n,m] (x,t I x',I'» = on,mG(X,t I x',l'), 

G(x,1 I x',t') = (Ga,a(x,l I x',t'». 

(a r!' 0) , 

(11.14) 

In correspondence to our previous results, G",a(x,l I x',t') 
is statistically sharp (M -+ 0Cl), and the covariances 
satisfy 

(ua(x,l)u_a(:r',t')Uf3(y,s)u_f3(y',s')··· ) 

= U(x,t; x',l') U(y,s; y',s')· , . +0 (M-l) (11.15) 

(a,{3, oo'r!'O, iair!'i{3lr!'oo,) 

[d. Eq. (8.14)]' It follows from Eq. (11.14) that 
U (x,t; x' ,t') has the symmetry property 

(
a (2) a 
--11- G(x,ll x',t')+-[u(x,t)G(x,t/ x',t')] 
at ar ax 

=H(x,t/ x',1') , (11.18) 

G(x,t' I x',t') =o(x- x'), 

where it follows from the iteration solutions, with 
Gaussian U[n]'(x,lo), that S(x,t;x',t') and H(x,tlx',t') 
have the forms 

irr 

S(x,t; x',t') = I: I: C2n; p~2n; p(x,t; x',t') , (11.19) 
n p 

and 
irr 

H(x,t/x',t')=I: I: C2n;pr2n;p(X,tlx',t').21 (11.20) 
n p 

To complete the set of equations, we may rewrite Eq. 
(11.11) in the form 

(
a a2 ) au(x,t) 
--11- u(x,t)+u(x,t)--
at ax2 ax 

1 a 
= -- -U(x,t; x,I). (11.21) 

2 ax 

Equation (11.21) is the balance equation for mean 
"momentum" density and Eq. (11.17) for x',t'=x,t is 
the balance equation for the mean "energy" density in 
the fluctuating field. 

The functions ~2n;p(X,t; x',t') and r2n;p(X,t I x',t') may 
be determined by the variational procedure of Sec. 4, 
using Eq. (11.15) and the statistical sharpness of 
G",a(x,tix',t'). The results for ~2;1(X,t; x',l') and 
r 2; 1 (x,t I x' ,t') are 

b 1 (x,t; x',t') 

1 a It! 00 a 
=-- dsf dyG(x',t'ly,s)-[U(x,t;y,S)]2 

2 ax to -00 ay 

a t 00 

+- f. ds f dyG(x,tly,s) 
ax to -00 

a 
X-[U(x,t; y,s)U(x',t'; y,s)], (11.22) 

ay 

U(x,t; x',t') = U(x',t'j x,t). a it foo (11.16) hl(X,t/ x',t') =- ds dyG(x,tl y,s) 
ax to -00 

From Eqs. (11.12) and (11.13) we find that 
U(x,t; x',t') and G(x,t i x',t') satisfy equations of the form 

(
a a2 

) a 
-- v-- U(x,t; x',t')+-[u(x,t)U(x,t; x',t')] 
at ax2 ax 

=S(x,t; x',t'), (11.17) 

a 
x -[U(x,t; y,s)G(y,s / x',t')]. (11.23) 

ay 

In general ~2n; p (x,t; x' ,t') consists of a sum of terms 
each of which involves a (2n-l)-fold space-time inte­
gration over a product of 2n-l factors G and n+ 1 
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factors U. The terms comprIsmg !2n;p(x,1 [x',I') each 
involve a (2n-l)-fold integration over a product of 2n 
factors G and n factors U. 

We shall illustrate the variational procedure in the 
present case by outlining the analysis for ~2;I(X,I; x',I'). 
In correspondence to Eq. (8.16), we may write, for the 
present problem, 

S(x,l; x',t')='E.t/'(S",~,,,_fj(x,l; x',I'» (a~O), 

a 
Sa,fj,"-f3(x,t; x',I') = -!M-i4>a,fj,,,_r-[ufj(x,/) (11.24) 

ax 

Then the iteration solution yields 

(S ",fj,a_fj(x,l; x',I'» 

oe irr 

=M-I'E. 'E. C2n;p(a, (3, a-{3n2n;p(X,t; x',t') (11.25) 
n=l p 

which corresponds to Eq. (8.21), and is the basis for 
Eq. (11.19). Now consider the variation Eq. (4.17). 
By using Eq. (11.5) several times, we find 

f:.4>"-fj,-f3,,, = f:.4>a-fj,a,-fj= f:.4>fj,-a+fj,a 

= f:.4>fj,a,-a+fJ= f:.4>-a,-fJ,-a+{J= f:.4>-a,-a+{J,-fj. 

Hence, recalling Eq. (11.3), we find 

f:.Ufj(x,f) = it dsf'" dyGfj,{J(x,/[y,s) 
to -co 

to order M-!, with expressions of the same type for 
f:.ua_fJ(x,f) and f:.u_a(x',I').34 These results correspond 
to Eq. (8.24). It is important to note that the pertur­
bation terms are o (M-i), so that the infinitesimal 
Green's functions correctly may be used to find the 
induced variations. Now we may express 

f:.(Sa.fJ,a-fJ(X,t; x',l'» 

to O(M-I) in correspondence to Eq. (8.25), reduce the 
averages by using Eq. (11.15) and the sharpness of the 
Ga,a, and appeal to the analog of Eq. (8.23). Thereby, 
we obtain the result Eq. (11.22). 

The random coupling model for the present problem 
is obtained by assigning the 4>'s as in Sec. 5, but with 
the additional constraints Eqs. (11.5) and (11.6). It is 

34 Only terms involving solely diagonal elements of the Green's 
function matrix are of leading order (.'11 -> OQ). Thus, for example, 
the variation in u_" induced by the perturbation terms in the 
equation of motion for 1Iff does not contribute in the limit. 

clear that these constraints do not affect Eq. (5.3) in 
the limit M ---7 00. Hence, we have 

S (x,l; x',I') = b 1 (x,l; x' ,I'), 

H (x,1 [x' ,f') =! 2; 1 (X,t [X' ,f') 
(11.27) 

for this model. These relations, together with Eqs. 
(11.16)-(11.18) and Eqs. (11.21)-(11.23), form a closed 
set which determine u(x,/), U(x,l; x',f'), and G(x,/[x',f') 
in terms of the initial functions u(x,to) and U (x,to; x' ,to). 

The most essential difference between the present 
equations and the analogous ones for the' random 
potential problem given in Sec. 10 is that G(x,t[x',t') is 
not independent of U (x,t; x' ,t') and u(x,t) in the 
present case; all three quantities now must be deter­
mined simultaneously. A further consequence of the 
nonlinearity is that u(x,t) does not have an expression 
analogous to Eq. (10.18). The Green's function 
G(x,t[x',I') can only describe the propagation of in­
finitesimal disturbances ou(x',I'). In general, u(x,t)~O 
even if u(x,to) =0 everywhere. 

The Navier-Stokes equation for the velocity u(x,l) 
of an infinite incompressible fluid of kinematic viscosity 
v may be written, after elimination of the pressure term,:l 
in the tensor form 

(; - VV'2 )Ui(X,t) = -!Pimn(V)[Um(x,t)u,,(x,I)], 

where 
(11.28) 

and 

for any f. We may treat the incompressible turbulence 
problem in direct analogy to the foregoing analysis by 
taking a collection of flow systems with individual 
velocity fields urn] (x,/) and considering the model 
equation35 

(~ - VV'2 )u;a(x,t) 

= -!M-ipinm(V')'E. 4>a,fJ,a_fJ[u n f3 (x,/)um,,-f3(x,f)], 
fj 

(11.29) 

where the u;a(x,l) are the collective velocity fields. 
The final equations for the random coupling model 

3' We use superscripts to label individual and collective quan­
tities here, in order to avoid possible confusion with tensor indices. 
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which result from Eq. (11.29) are similar to those for 
Burgers' equation, but more complicated. In the case 
of homogeneous turbulence, they take their simplest 
form when transformed to correspond to a representa­
tion of the velocity field by spatial Fourier modes. They 
are then identical with equations for homogeneous 
turbulence derived previously by a different method. 36 

The earlier derivation exploited the fact that the 
Fourier amplitudes of a homogeneous field have statis­
tical properties which closely resemble those of the 
collective coordinates used in the present paper (d. 
Sec. 3). Unlike the present approach, which involves no 
geometrical symmetry restrictions and which may be 
extended to fully bounded flows, the earlier treatment is 
valid only in the homogeneous case. A discussion of the 
energy dynamics of the random coupling model is given 
in Sec. 4 of the first reference cited in footnote 36. 

We wish, finally, to give a very brief discussion of 
turbulent convection, which will serve to illustrate a 
point raised at the end of Sec. 9. Let if/(x,t) represent 
the zero-mean fluctuations in the concentration of 
marked particles carried along with an incompressible 
turbulent flow which obeys Eq. (11.28). Then if/(x,t) 
satisfies 

(
a) aif/(x,t) 
--KV'2 if/(x,t)=-Ui(X,t)--, 
at aXi 

(11.30) 

where K is the molecular diffusivity. If if/cn] (x,t) and 
if/ .. (x,t) represent, respectively, the individual and col­
lective fields for a collection of flows, the model equation 
corresponding to Eq. (11.30) is 

where Eqs. (11.5) and (11.6) are satisfied. 
The random coupling model equations which result 

from Eq. (11.31), under Gaussian initial conditions of 
the form we have taken before, are 

-It f 3 • aG(x,tly,s) aG(y,slx',t') 
- ds d yUij(x,t, y,s) , 

t' ax, aYi 

G(x,t'l x',t') =o(x- x'), (11.32) 

36 R. H. Kraichnan, J. Fluid Mech. 5, 497 (1959); see also, 
Second Symposium on Naval Hydrodynamics, edited by R. Cooper 
(United States Government Printing Office, Washington, 1960). 
The equations corresponding to the random coupling model are 
called the "direct-interaction approximation" equations in these 
papers. 

and 

(!!..-KV'}+ai(X,t)~)'lt(X,t; x',l') 
at aXi 

a t' 

=-f dSfd3YUii(x,t; y,s)G(x',t'l y,s) 
aXi to 

a'lt(x,t; y,s) a it f x +- ds d3yUii(X,t; y,s) 
aYi aXi to 

a'lt (x' ,t' ; y,s) 
XG(x,tl y,s) , (11.33) 

aYi 
where 

Ui(X,t) = (Ui Cn ] (x,l», 

Ui/x,t; x',t') = (u.CnJl (X,t)Ui Cn ]' (x',l'», 

'It(x,t; x',t') = (if/cn] (X,t)if/cn] (x',t'», 

and G(x,tl x',l') is the mean diagonal Green's function 
for the concentration fieldY We have assumed 
<if/cn] (x,t»= 0, a condition which is preserved by the 
equations of motion. A detailed study of the conse­
quences of these equations when the velocity field is 
statistically homogeneous has been made by Roberts,38 
who derives the equations for this case by methods 
related to those of the references cited in footnote 36. 
Another case has been discussed by the present author.39 

In accord with the discussion in Sec. 9, the random 
coupling equations for turbulent convection involve 
only Ui(X,t) and the covariance tensor U'i(X,t; x',t'), 
regardless of the distribution of the fluctuating part of 
the velocity field. Suppose, now, we ask how the higher 
statistical structure of the velocity field can be incor­
porated in higher stochastic models for the convection 
problem. If this structure were known explicitly, we 
could, in principle, insert the associated cumulants in 
the non-Gaussian terms, of the type in Eq. (9.4), which 
contribute in the higher models. An alternative pro­
cedure is to assume Gaussian initial conditions for both 
the concentration field and the fluctuating velocity field 
and then treat Eqs. (11.29) and (11.31) as a simul­
taneous set, making the cf>'s identical in the two equa­
tions. The sequence of higher models for this problem 
would commence with that of Sec. 7, and the non­
Gaussian diagrams would never arise. The assumption 
of Gaussian initial conditions often may be physically 
plausible, particularly if the flow has persisted long 

37 G(x,ti x',t')d3x is the probability that a marked particle intro­
duced at x', t' is in d3x at X,t. 

38 P. H. Roberts (to be published). [Issued also as Rept. 
HSN-2, Division of Electromagnetic Research, Institute of 
Mathematical Sciences, New York University (1960).J 

39 R. H. Kraichnan, in Hydrodynamic Instability, Vol. 13, Pro­
ceedings of Symposia in Applied Mathematics, edited by G. 
Birkhoff (American Mathematical Society, Providence, Rhode 
Island, to be published). 
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enough that the higher statistical structure of the 
velocity field is determined principally by the dynamics 
rather than by the cumulants of the initial distribution. 
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APPENDIX A 

The second relation in Eq. (3.12) may be written 

where we use (Ga.,,(t)=G(t). Let the left-hand side of 
Eq. (A.l) be expanded by iteration of Eq. (4.6). In 
each term of the expansion of G".a(t) or G",,,*(t), the 
sum of indices of the b factors is zero [d. argument 
leading to Eq. (4.7)]. Consequently, (Ga,,,(t»(G,,.,,*(t) 
consists of terms of the form 

(-i)r-'M-(r+',)/2 L~ ..... ~.'Y'''' .• (product of ¢'5) 

X (b~· .. b~b_~_ ... _p.)(b'Y· .. b.b_'Y_ ... _.)r+s/r!s!, (A.2) 

where there are r factors b in the first average and s in 
the second. For each such term there will be a cor­
responding term 

(_i)r-sM-(r+8)/2 L~ ..... ~.'Y""" (product of ¢'s) 
X (b{1' .. b~b_{1_ ... _p.b'Y· .. b.b_'Y_ ... _.)tr+8/r!s! (A.3) 

in the expansion of (G"."(t)G".,, *(t», where the product 
of ¢'s is identical for given indices (3, ..• , 'Y, .... Let 
the ¢'s be bounded. Then the difference of Eqs. (A.2) 
and (A.3) is bounded in magnitude by 

M-(r+8 )/2[ (product of ¢'s) [max L{1 .... ,~.'Y ...... 
X [(b{1" ·b~L{1_ ... _p.)(b'Y·· ·b.b_'Y-"'_') 

- (b{1' .. b~b_{1_ ... _p.b'Y· .. b.b_'Y-"'_') [/"+s/r!s!. (A.4) 

It now follows straightforwardly from Eq. (9.3) (we 
take the general non-Gaussian case) that Eq. (A.4) is 
O(M-I) if [(product of ¢'s) [max is independent of M 
(M -'> OCJ). Similar analysis establishes Eqs. (8.14) and 
(11.15), if the iteration solutions of Eqs. (8.9) and 
(11.12), respectively, are used to express the equations 
in terms of the parameters and initial values, whose 
statistical properties are prescribed. In these solutions 
it is convenient to let the mean amplitudes remain in 
the expansions as parameters. 

The significance of Eq. (3.12) was discussed in the 
text. Equations (8.14) and (11.15) also may be under­
stood qualitatively as consequences of the fact that 
the dynamical behavior of a collective degree of freedom 
is determined (M -'> OCJ) by interaction with an infinite 
number of other degrees of freedom: The dynamical 
coupling with any given few of the other degrees of 
freedom is infinitesimal in the limit, and this implies 
a corresponding weakness of statistical dependence. 
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On a Moving Boundary Problem 
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An exact analytic solution is obtained for a uniformly expanding, neutral, infinitely conducting plasma 
sphere in an external uniform and constant magnetic field. 

I. INTRODUCTION 

'THE standard techniques for the solution of 
boundary value problems arising in mathematical 

physics are well known. The introduction of a moving 
boundary into the physics usually precludes the 
achievement of an exact analytic solution of the 
problem and recourse to approximation methods is 
required. l In the case of a moving plane boundary a 
time-dependent translation of the embedding space 
immobilizes the boundary at the expense of the in­
<:reased complexity of the differential equation. It is 
the aim of this work to present an example of a soluble 
moving boundary value problem in spherical coordinate 
geometry. 

Consider a spherical region of space containing a 
neutral infinitely conducting plasma which has ex­
panded to its present state from a point source. The 
external environment is free of current and charge 
densities but contains a magnetic field which at 
infinity is uniform and constant, B=Bok. As the 
spherical region expands it both perturbs the external 
magnetic field and generates an external electric field. 
Within the spherical region there is neither an electric 
field nor a magnetic field. We wish to obtain an analytic 
representation of the configuration of the external 
electromagnetic field. 

External to the spherical domain the electromagnetic 
fields satisfy the source free Maxwell equations (except 
for the source at infinity which produces the magnetic 
field Bo). We shall use the rationalized mks system of 
units. Since the external region is devoid of free charge 
density, a suitable gauge allows the electric and 
magnetic fields to be derived from the vector potential 
A, i.e., E=-aA/at and B=VXA. The vector potential 
of the original field written in spherical coordinates is 
Ao= tBor sinO~. Thus, it is sufficient to choose the 
vector potential A in the form A= W(r,1) sinO¢. The 
differential equation for W obtained from the set of 
1\faxwell's equations is 

This equation is to be solved in the external region 
1">R(t) subject to boundary and initial conditions. 

The initial conditions are 

1=0: W=tBor, 

aw /at=o. 

(2) 

(3) 

The first initial condition states that the initial value 
of W is that of a uniform and constant magnetic field. 
The second initial condition states that there is no 
initial electric field. Boundary conditions must be 
imposed at the spherical surface r=R(t) and at infinity. 
Because of the finite propagation velocity the magnetic 
field at infinity will remain undisturbed for all finite 
times. Further, no incoming wave-type solutions are 
permitted. Thus, for all finite times 

r --4 CIJ, W --4 t Bor. (4) 

The boundary conditions at the expanding spherical 
surface must include the effects of the boundary 
motion. These conditions are 

r=R(t), oBr=O, 

o (E",+RBe) =0, 

o (Be+c2RE",) = p.K "', 

(5) 

(6) 

(7) 

(8) 

where R is the velocity of the expanding surface, 0 
signifies the jump across the surface, w is the surface 
charge density, and K", is the <p component of the 
surface current density. On introducing the function 
Wand recalling that there are no internal electro­
magnetic fields, we obtain the boundary conditions in 
the form 

r=R(t) : W=o, (9) 

aw /at+Rr-la(rW)/ar=O. (10) 

Further, the conditions upon the surface densities are 

w=o, (11) 

showing the absence of free charge on the expanding 
surface and 

r=R(t) : 
(12) 

1 Philip M. Morse and Herman Feshbach, i}! ethods of Theoretical 
Physics (McGraw-Hill Book Company, Inc., New York, 1953), 
Vol. II, Chap. 9. relating the surface current density to the function W. 
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An exact analytic solution is obtained for a uniformly expanding, neutral, infinitely conducting plasma 
sphere in an external uniform and constant magnetic field. 
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(2) 

(3) 
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(6) 

(7) 
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II. SOLUTION 

The problem of solving Eq. (1) subject to the initial 
conditions in Eqs. (2) and (3) and the boundary condi­
tions in Eqs. (9) and (10) will be accomplished by 
transform theory. We introduce a new dependent 
variable V = r!W, whence Eq. (1) assumes the form 

The complex Laplace transform if!(r,p) of the function 
V(r,t) is introduced by 

if! (r,p) = (21r)-! J'" V(r,t)eiPtdt, p=u+iv. (14) 
o 

This transform is valid in the half-plane v> Vo, since 
V is of the exponential type, V=O(evoltl) and possesses 
an inverse 

ia+oo 

~(r,t) = (21r)-t ia-", if! (r,p)e-iPtdp, a>vo. (15) 

The differential equation satisfied by if! is found from 
Eq. (13) and the initial conditions in Eqs. (2) and(3): 

a2cI>/ar2 + r-1aif!/ar + [ (p/ C)L (3/2r)2Jif! 

=!ip(21r)-tc2B or!. (16) 

Its solution may be written at once: 

if! (r,p ) = p-!M(p)H~ (I) (rp/ c)+p-W(p)H! (2) (rp/ c) 

+!i(21r)-tp-IBor!, (17) 

where M and N are arbitrary functions of p determined 
from the boundary conditions in Eqs. (9) and (10), and 
H! is the Hankel function of order l Since H!(2) gives 
rise to incoming waves, we set N = O. The solution to 
Eq. (1) now may be written in the form 

W(r,t) =!Bor+r-l fia+'" dpM(p)p-l(1 +ic/rp) 
zo-oo 

Xexp[ -ip(t-r/c)J, r>R(t). (18) 

This is actually the solution for a fixed domain where 
M(p) is the transform of a boundary condition applied 
at r=O. 

The moving boundary condition in Eq. (9) requires 
the satisfaction of 

!BoR2+ f dpM(p)p-l(l +ic/Rp) 

Xexp[ -ip(t-R/c)J=O. (19) 

Thus, the moving boundary condition is satisfied by 
matching it with an equivalent boundary condition 
at r=O. Since the sphere moves with a radial velocity 

w less than the velocity of light c, we have 

t t 

R= i wdt<f cdt=ct, 
o 0 

or t-R/c>O. Thus, the contour in the integral of 
Eq. (19) may be closed by an infinite semicircle in the 
lower half plane and the integral evaluated by the 
method of residues. 

Explicit evaluation of this rather awkward integral 
equation, Eq. (19), may be accomplished in the 
special case of a uniform expansion. Choosing the 
simple model of constant radial velocity R=wt yields 

M = -3Bow2 (21ri)-1(2+c/W)-1 (l-w/ C)-2p-2, (20) 

whence the complete solution of Eq. (1) may be 
obtained by inserting Eq. (20) into Eq. (18) and 
evaluating the integral. On recalling that the interior 
region is devoid of electromagnetic fields, the solution 
may finally be written in the form 

0, r<wt 

1 W3t3(1-r/ct)2(1+2r/ct) 
'iBOr- Bo- --- , 

W(r,t) = 2r2 l-w/c 1+2w/c (21) 

wt<r<ct, 

!Bor, ct<r. 

It may also be noted that this special case of the 
uniform expansion falls within the conical flow tech­
niques. From symmetry considerations one seeks a 
solution of the form W=rnP(r/ct). Substitution into 
the differential equation, Eq. (1), yields an explicitly 
solvable ordinary differential equation whose solution, 
upon application of the boundary conditions, is given 
by Eq. (21). 

III. CONCLUSION 

A complete solution of the uniform radial expansion 
of a neutral, infinitely conducting plasma sphere has 
been obtained. The electromagnetic fields are derived 
by forming the appropriate derivatives of W while the 
surface current density is obtained from Eq. (12). It 
may be seen immediately that the electromagnetic 
fields are perturbed only within the domain extending 
from the surface of the expanding plasma sphere 
r=wt to the surface of the expanding information sphere 
r= ct. External to the sphere r= ct only the initial 
constant and uniform magnetic field is to be found. 
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